

AFRL-IF-RS-TR-2004-111

Final Technical Report
April 2004

AUTOMATED DYNAMIC ASSEMBLY OF
DEPENDABLE SYSTEM ARCHITECTURES

SRI International

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K509

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-111 has been reviewed and is approved for publication.

APPROVED: /s/

DEBORAH A. CERINO
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
APRIL 2004

3. REPORT TYPE AND DATES COVERED
Final Jul 00 – May 03

4. TITLE AND SUBTITLE
AUTOMATED DYNAMIC ASSEMBLY OF DEPENDABLE SYSTEM
ARCHITECTURES

6. AUTHOR(S)
R. A. Riemenschneider

5. FUNDING NUMBERS
C - F30602-00-C-0199
PE - 62302E
PR - DASA
TA - 00
WU - 08

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SRI International
333 Ravenswood Avenue
Menlo Park California 94025

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-111

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Deborah A. Cerino/IFTB/(315) 330-1445/ Deborah.Cerino@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This project was part of the DARPA Dynamic Assembly for Systems Adaptability, Dependability, and Assurance
(DASADA) Program. The DASADA program objective was to develop dynamic gauges or measures of component
composability or interoperability. As military software systems become more complex, it is evident that they must be
able to change themselves by swapping or modifying components, changing component interaction protocols, or
changing topology. Particularly for critical military systems, we need to enable changes to be made predictably to
ensure safety and reliability. The objective of this project was to develop technology for generating custom dependability
gauges which monitor dependability properties (e.g., security, safety, fault tolerance) of a complex, evolving software
architecture at runtime. This project's principal innovation consists of focusing on abstractions rather than refinement,
and on automatic updating of abstractions and analyses developed at design time after making small well-structured
changes to architectural requirements and the system architecture. Their dependability gauge technology is
complementary to the more fine-grained runtime analysis that can be performed by monitoring events at component
interfaces and within connectors that are being developed by other DASADA contractors.

15. NUMBER OF PAGES
77

14. SUBJECT TERMS
Dependability Properties, Architectural Models

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

 UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

 Table of Contents

1 Introduction 1
1.1 Objectives . 1
1.2 Approach . 1
1.3 Demonstration Development and Experimentation 2

2 Project Overview 5
2.1 Motivation . 5
2.2 The Component-Based Lifecycle 6
2.3 Dependable System Architectures 7
2.4 Designing for Dependability . 8
2.5 Generating Dependability Gauge Readings 9
2.6 Dependable Evolution through Perpetual Design 10

3 Gauge-Building Technology 13
3.1 Abstraction Transformation Rule Grammar 13
3.2 Developing Abstraction Transformations 39

4 A Dependability Gauge for Failure Tolerance 40
4.1 SEAS . 40
4.2 Abstraction . 44
4.3 Analysis . 48
4.4 Update . 49

5 A Dependability Gauge for Confidentiality 58
5.1 Abstraction . 58
5.2 Analysis . 60

5.2.1 Reasoning about Encryption 60
5.2.2 Analysis of Intramachine Connections 64

i

5.3 Update . 65

6 Related Work 66

7 Conclusion 68

Bibliography 69

ii

List of Figures

Figure 2.1 Dependability Gauges 10
Figure 2.2 Re-Architecting to Improve Fault Tolerance 12

 iii

Chapter 1

Introduction

1.1 Objectives

The objective of the project was to develop technology for generating customde-
pendability gauges, which monitor dependability properties (e.g., security, safety,
fault tolerance) of a complex, evolving software architecture at runtime.

The principal application of the technology was to demonstrate a re-engineered,
dynamically adaptable prototype upgrade of the Structured Evidential Argumen-
tation System (SEAS)1 developed by the SRI Artificial Intelligence Center (AIC)
for DARPA’s Project Genoa.

1.2 Approach

The approach was based on previous SRI research on guaranteeing dependability
properties of software architectures. In that research, we proved that an abstract
description of a software architecture guarantees the desired dependability prop-
erty and that dependability is preserved by each refinement step in the design
process that produces the implementation of the abstract description. Continued
dependability as an architecture evolves at runtime was guaranteed by verifying
(at design time) that allowed evolutionary transformations preserve dependability.

The principal focus of our DASADA work was to support less-constrained
architectural evolution at runtime. When a change is made to the architecture
at runtime, the change will be automatically propagated up the chain of refine-

1See the Web sitehttp://www.ai.sri.com/˜seas/ for more details about SEAS.

 1

ments leading to the abstract, analyzable description. The dependability level of
the abstract description will be automatically reassessed, and then dependability
preservation of the refinement steps will be reassessed. The highest demonstrable
level of dependability will be displayed on a dependability gauge.

If an evolutionary step reduces dependability to an unacceptable level, a li-
brary of dependability-enhancing evolutionary transformations is available that
can be applied, in some cases, to restore dependability.

This technology has been demonstrated by developing dependability gauges
and a library of dependability-enhancing transformations for the SEAS compo-
nent of the Genoa system.

1.3 Demonstration Development and Experimenta-
tion

In making our intrusion-tolerant version of SEAS more dynamic, we added four
intrusion-tolerance mechanisms that canbe independently toggled:

1. redundancy in persistent storage

2. encryption of traffic between the persistent store(s) and the main applica-
tion

3. encryption of the information in the persistent store

4. use of the SSL protocol rather than HTTP between the user and the appli-
cation

For each of the four mechanisms, a corresponding gauge that measures the ef-
fect of toggling the mechanism has been implemented. For example, the gauge
that corresponds to storage redundancy measures the length of the shortest attack
sequence that compromises storage, while the storage traffic encryption gauge
measures whether it is possible for an unauthorized agent (one who lacks the de-
cryption key) to obtain information from the message traffic. Each of the four
gauges analyzes a different abstract model, generated from the common concrete
architectural model by applying a different abstraction strategy, and uses a dif-
ferent technology to perform the analysis. For example, the storage redundancy
gauge generates Promela code from its abstract model, which is then analyzed

2

by the Spin model checker,2 while the storage traffic encryption gauge generates
a logical theory and a query from its abstract model, which is then fed to the
PTTP automatic theorem prover3 to determine whether the query is a logical con-
sequence of the theory.

The intrusion-tolerance mechanisms have been designed to allow two experi-
mental hypotheses to be tested.

1. Instrumenting a system with dependability gauges will improve the assess-
ment of the impact of architectural changes — addition, removal, and re-
placement of components and connectors — on system dependability prop-
erties.

2. Tuning a dynamic system architecture based on dependability gauge read-
ings will improve system dependability.

We have assumed that the most desirable balance of dependability and func-
tionality in a system changes over time. In particular, when there is reason to
believe that the system may be under attack, sacrificing some functionality for
greater dependability may be desirable. We enhanced the SEAS prototype by
making its architecture dynamic, so that it can be adapted to current conditions.

The evaluation experiments were conducted in two stages. In the first, the
emphasis was on design-time analysis of the proposed static architecture for the
next-generation SEAS. The objective was to determine whether, in this case, for-
mal analysis of the architecture’s dependability properties reveals any problems
that the designers missed. The experimental measure of success for this first stage
is the percentage of changes in which the designer-predicted and measured effects
of the change on dependability properties are the same. In the second stage, two
versions of the architecture would have been executed in parallel, one static and
the other dynamic, with the latter instrumented using dependability gauges. The
same attack is then run against both versions. The objective was to determine
whether the instrumented version can continue to function longer — thanks to
adapting intrusion resistance and intrusion tolerance mechanisms in response to
the attack — than the static version. The experimental measure of success for
the second stage is the ratio of the time (or a standardized measure of the num-
ber of attack steps) required to compromise the instrumented version to the time

2See the Web sitehttp://spinroot.com/spin/whatispin.html for more infor-
mation about Spin.

3See the Web pagehttp://www.ai.sri.com/˜stickel/pttp.html for more in-
formation about PTTP.

3

required to compromise the static version. The second planned experiment could
not be performed, because of budget cuts.

4

Chapter 2

Project Overview

2.1 Motivation

It will soon be the case that most systems will be constructed, at least in part,
from pre-existing components. The infrastructure needed to support a component-
based lifecycle is currently emerging: intercomponent communication mecha-
nisms (CORBA, DCOM) and data interchange formats (XML, DOM), service
discovery mechanisms (Jini, e-Speak), and even higher-level collaboration and
delegation mechanisms (SRI’s Open Agent Architecture).

But a component-based lifecycle also poses new software engineering chal-
lenges. Most components developed for the commercial market will not be de-
veloped with the high dependability requirements of, e.g., DoD mission-critical
applications in mind. So, if developers of highly dependable systems are to take
maximal advantage of the availability of components, one question that must be
answered is

How can a highly dependable system be built from components that
may not be dependable?

Basing systems on components will also increase the pace of system evolution.
Components will quickly be declared obsolete, and replaced by new versions. As
new versions of components, offering new capabilities, become available, users
will naturally want to exploit those capabilities. Other pressures driving evolution
— for example, the need to respond to changes in missions — can only intensify
as well. Thus, another question that must be answered is

How can dependability be maintained when a system is constantly
evolving?

5

Previous SRI research on the design and construction of architectures for se-
cure distributed transaction processing has shown how it is possible to build a
secure system from not-necessarily-secure components. The primary innovation
in our approach is to link an abstract architectural model that is proven secure to
the implemented system architecture by a series of transformations that demon-
strably preserve security. This verified link allows us to conclude that results
obtained from our security analysis of the abstract model are applicable to the im-
plementation as well. The same technique can be used to establish other system
dependability properties.

For this effort, we have built upon this previous research,

• by generalizing our approach to dependability properties other than security
and

• by using the transformation chains that link the abstract, analyzable archi-
tectural models — one per dependability property — to the concrete system
architecture to dynamically update the abstract models as the running sys-
tem evolves.

These additions made it possible to builddependability gaugesthat continuously
measure dependability properties of an evolving system.

2.2 The Component-Based Lifecycle

In the future, systems will primarily be constructed by composing functionality
provided by pre-existing components. These systems will be adapted to changes
in requirements and available components by adding new functions, eliminating
functions that are no longer needed, and substituting functions provided by new,
improved components for those provided by obsolete components. The infras-
tructure required to support this component-based lifecycle is currently emerging.
Intercomponent communication mechanisms, such as CORBA and DCOM, and
data interchange formats, such as XML and DOM, are now widely used in both
the defense and commercial sectors. Component discovery mechanisms, such as
Sun’s Jini and HP’s e-Speak, while not yet in widespread use, are growing rapidly
in popularity. And higher-level mechanisms for collaboration among components
and delegation of service requests, such as SRI’s Open Agent Architecture, are
becoming available.

This new component-based lifecycle presents a host of new software engineer-
ing challenges. Traditionally, high-quality software is a product of a rigorously

6

controlled, carefully monitored development process. Confidence that a system
will satisfy its requirements is based on confidence that its subsystems satisfy
their requirements. If those subsystems are, say, closed-source COTS compo-
nents, what is the foundation for confidence in quality? Experience shows that de-
velopers of COTS components tend to value the addition of features more highly
than quality, because most of their customers also value features more highly than
quality. How, then, can such components be used in mission-critical systems that
have strict dependability requirements?

The increased dynamism of the component-based lifecycle is another source
of software engineering challenges. The life span of systems is measured in
decades, while the life span of typical components can be as little as a few weeks.
Frequent new releases of COTS components in particular must be expected: this
is the principal source of revenue for the developers. Thus, even if system require-
ments never change, the system itself must be expected to undergo constant evo-
lutionary change. And, of course, requirements do change, as a result of changes
in missions, additional service demands from the users, needs for higher depend-
ability, and so on. Even limited, infrequent, carefully controlled maintenance of
systems tends to result in decreased quality due to unanticipated effects of changes
to code. Frequent replacement of components by others that offer a somewhat dif-
ferent interface to somewhat different functionality — and that contain somewhat
different bugs — will greatly exacerbate the traditional problems of maintenance,
partly because of the increased frequency of change and partly because some of
the traditional tools for coping with change (such as extensive regression testing
of components and source code flow analysis) will no longer be available.

2.3 Dependable System Architectures

SRI research on methods for developing system architectures with guaranteed de-
pendability properties can be applied to the software engineering challenges posed
by the component-based lifecycle in several complementary ways. The main fo-
cus of our research has been on developing techniques for establishing that archi-
tecture transformations preserve dependability properties. This technology can be
applied to the design of dependable architectures, to evaluating the dependabil-
ity of component-based systems, and to the dependable evolution of component-
based systems.

7

2.4 Designing for Dependability

There are two approaches to guaranteeing that a system satisfies a dependabil-
ity constraint. The difference between these approaches can be illustrated by a
simple example. Consider a system composed from components with varying se-
curity levels and clearances. Security policies for such multilevel systems include
constraints on communication. For example, a typical constraint is that “read-
up” is not allowed. That is, a component must not read data whose classification
is greater than the component’s clearance. How can we guarantee that such con-
straints are satisfied if the system contains closed-source components whose secu-
rity has not been verified? One approach is to monitor all communication among
components at runtime, and check whether the security policy is satisfied in each
case. In cases where the communication would violate the security policy, the
communication is blocked. An alternative approach is to design a system archi-
tecture that restricts communication among components so as to reduce the need
for runtime constraint checking. If the architecture is designed so that commu-
nication channels between components exist only when communication between
those components is consistent with the system’s security policy, then no runtime
checking of the security constraints is needed.

Our research has explored the latter approach. One product of that research is
a dynamic architecture for secure distributed transaction processing (SDTP) [3, 10].
SDTP was designed by writing a simple abstract description of the architecture,
showing that the description guarantees the desired security properties, suc-
cessively refining the abstract description until a directly implementable concrete
description results, and showing that each refinement step preserves satisfaction
of the security policy. Refinement steps were the result of applying reusable re-
finement transformations that codify implementation techniques. Thus, SDTP is
an example of how a dependable (in this case, secure) system can be constructed
from not-necessarily-dependable components, without the overhead of runtime
constraint checking.

Our current tools for supporting design of dependable architectures generalize
capabilities in our earlier PegaSys system, which is currently in industrial use by
software engineers with no particular training or experience in the use of formal
methods. PegaSys appears to be an ordinary CASE tool, but it has an additional
capability: it informs the user if any design constraints are violated. The appli-
cation of formal methods to discover constraint violations is entirely “behind the
scenes.” When the current design toolset is fully mature, it too will be usable by
practicing system designers.

8

2.5 Generating Dependability Gauge Readings

Formal methods, such as model checking and theorem proving, can be effective
for determining whether systems have desired dependability properties. Less for-
mal methods, such as simulation, also provide useful information about depend-
ability, even when incapable of providing definitive answers. But, for complex
systems, these methods cannot be applied directly. An abstract system model, de-
signed specifically for the purposes of the particular dependability analysis, must
be created. As much system detail as possible is abstracted away, in order to make
the analysis more tractable.

Model checking failure tolerance of a system — where failure may be due to
a transient accidental fault, a persistent accidental fault, or some form of mali-
cious interference or corruption — provides a good illustration of the necessity
of abstraction. Failure tolerance means that no combination of system state tran-
sitions and failure transitions can lead to a state where a system cannot supply
essential services. Naı̈ve models of complex systems will have too many states
(often, infinitely many) for exhaustive state exploration to be feasible. This prob-
lem is particularly acute when closed-source components are involved, since such
components’ states potentially depend upon the entire history of their interactions
with the system. Of course, for a failure tolerance analysis, a very simple model
of such components is sufficient. Only the component’s external interface proto-
col and whether it has failed or not is relevant. But, when a system is constructed
from a large number of components with complex interface protocols in accor-
dance with a complex architectural description, the number of states may still be
too large for model checking. Boolean abstraction of protocols proves very useful
in such cases, and SRI has developed techniques for automatically determining
relevant predicates for use in the abstraction [4, 18].

In prior work, our application of abstraction techniques has been at design
time. In the component-based lifecycle, where the system is constantly evolving,
there are obvious advantages to applying them at runtime as well. For each de-
pendability property of interest, an abstract system model that can be analyzed to
determine whether the system has the property will be generated. The abstraction
transformation steps will demonstrably co-preserve dependability. In other words,
if the generated abstract model is dependable, then the more concrete input to the
abstraction step must be dependable as well. As the system evolves, the abstract
models will be updated by “replaying” the derivations that generated them. Thus,
the dependability of the system can be dynamically reassessed whenever there
are relevant changes in the environment or within the system itself. The results

9

complex, implementation-level
description of system “wiring”

fault tolerance-
oriented
abstraction
transformations

simple, abstract,
analyzable
fault tolerance
view

analysis tool

fault tolerance gauge

security-oriented
abstraction transformations

simple, abstract,
analyzable

security view

analysis tool

security gauge

safety-oriented
abstraction transformations

simple, abstract,
analyzable
safety view

analysis tool

safety gauge

Figure 2.1: Dependability Gauges

of analysis of the abstractions are displayed as dependability gauge readings, as
shown in Figure 2.1.

2.6 Dependable Evolution through Perpetual Design

Much as transformations can be used at design time to create a baseline archi-
tecture that has desired dependability properties, transformations can be used at

10

runtime to ensure continued dependability as requirements, the system, and its
environment evolve. The basic idea is that changes in dependability gauge read-
ings can trigger application of dependability-enhancing, functionality-preserving
architecture transformations.

Any of the following may trigger re-architecting.

• A change in required dependability level.The system administrator may
decide that the system should be made more (or less) secure, more (or less)
fault tolerant, more (or less) safe, etc. Architectural transformations ex-
pected to have the appropriate effect will be applied, and the results mon-
itored using the appropriate dependability gauge, as shown in Figure 2.2.
Other dependability gauges will be monitored as well, to ensure that other
dependability constraints remain satisfied.

• A change in desired functionality.The system user may request that the sys-
tem provide some additional service, requiring the integration of additional
components or the replacement of components with other components offer-
ing additional functionality. If a new component is added to the system, or
one component is replaced by another that proves less dependable, then the
system architecture may have to be made more dependable to compensate.
An example is provided by our SDTP work, where we showed that a very
simple architecture can be used to securely integrate single-level databases
that are all at the same level, but substantial architectural complexity must
be introduced when a database at a different level is integrated into the sys-
tem.

• A change in component availability.Changes in component availability can
also necessitate addition and replacement of system components, and hence
changes in system architecture.

• A change in the system’s behavior or performance.Monitoring of depend-
ability gauges may reveal dependability requirements that were being satis-
fied but are no longer being satisfied. Similarly, monitoring of performance
gauges may reveal that system performance has declined to an unsatisfac-
tory level. Architectural transformations can be applied to address such
problems.

So, there are at least two advantages to designing an architecture that ensures
satisfaction of dependability requirements without runtime constraint checking.

11

system architecture

fault tolerance-
oriented

abstraction
transformations

fault tolerance gauge

system architecture
with increased redundancy

updated
fault tolerance-
oriented
abstraction
transformations

fault tolerance gauge

“increase fault tolerance (while
 maintaining security, safety, …)”

evolution transformation:
**

Figure 2.2: Re-Architecting to Improve Fault Tolerance

First, the runtime overhead of checking is eliminated. Second, runtime checking
does not seem well suited to guaranteeing that some types of dependability con-
straints are satisfied. The primary problem with “designed-in” dependability is
coping with change. A system may be dependable when first fielded, but how can
dependability be assured as it evolves? Our answer to this question is: Use the
same technology that was used to assure dependability of the initial release. This
means maintaining the links between the abstract models and the implementation
as the system evolves, and re-analyzing the abstract models whenever they are
altered. In other words, we want to bring the design-time capabilities we have
developed for assuring dependability to runtime, resulting in a system lifecycle
based onperpetual design for perpetual dependability.

In the following chapters, the gauge-building technology and the two more
complex of the four sample gauges developed for this effort will be discussed in
greater detail.

12

Chapter 3

Gauge-Building Technology

3.1 Abstraction Transformation Rule Grammar
Teal is a pattern language for architectural descriptions. For example, the Teal
specifcation
acme_channel_to_sadl_var: PATTERN

BEGIN
ABSTRACT_TEMPLATE(Acme)::

system @m = {}
component @f1 = { ports {@op; @@ops1; @@ips1} };
component @f2 = { ports {@ip; @@ops2; @@ips2} };
connector @c = { roles {@ir; @or}};
@@restc;
attachments {

@c.@ir to @f1.@op;
@c.@or to @f2.@ip;
@@resta}

}
END_TEMPLATE
CONCRETE_TEMPLATE(Sadl)::

@m: ARCHITECTURE [@@ips -> @@ops]
BEGIN

@f1: Functional_style!Function[@@ips1 -> @@ops1]
@f2: Functional_style!Function[@@ips2 -> @@ops2]
@v: Shared_Memory_style!Variable(@t)
@@restc
@a1: CONSTRAINT = Shared_Memory_style!Writes(@f1, @v)
@a2: CONSTRAINT = Shared_Memory_style!Reads(@f2, @v)
@@resta

END
END_TEMPLATE
ASSOCIATIONS::

@op --> ()
@ip --> ()
@ir --> ()
@or --> ()
@c --> (@v)

13

END

says that any match of an Acme architectural description and SADL

architectural description [11] to the abstract and concrete templates, respectively,
is an instance of the pattern.1 (This pattern says, roughly, that an Acme connector
that connects two Acme components is an abstraction of a SADL shared variable
that is written to by one SADL component and read by another, and, conversely,
that the SADL shared variable is a way of implementing the Acme connector.)

A Teal pattern can be compiled into a pair of refinement rules: a rule for
generating a match to the concrete pattern given a match to the abstract pattern
(i.e., a refinement rule), and a rule for generating a match to the abstract pattern
given a match to the concrete pattern (i.e., an abstraction rule).

Since, for the present effort, our only concern is with abstraction of Acme de-
scriptions — Acme is thelingua francaof DASADA — the “refinement” direction
and the indication of the architectural description language used is irrelevant, and
the following simpler notation, expressed in Prolog grammar rules, for abstraction
transformations has been employed.2

xform(xform(Id, InDesc, Map, true, OutDesc)) -->
[token(transformation, key)],
id_or_meta(Id),
[token(from, key)],
architectural_description(InDesc),
[token(to, key)],
architectural_description(OutDesc),
[token(where, key)],
map(Map).

map(map(Id, Maplets)) -->

1The details of pattern matching will be left vague, deliberately, as the process is somewhat
complicated. Ideally, from a purely technical point of view, the matching should be performed
on the abstract syntax trees. But, in that case, the user must understand the details of the in-
ternal representation of the abstract syntax. The REFINE language [6, p. 313ff] provides some
nice illustrations of the complexities that result from this level of precision. On the other hand,
a straightforward match to the surface syntax of the descriptions is entirely unsatisfactory, since
it makes irrelevant features of the description, such as the order of declarations, relevant. Teal
attempts to develop a “user friendly” compromise between the two, which seems to satisfy users’
intuitions quite well, in the sense that they find it easy to write Teal patterns that correctly express
their intentions without any understanding of the formal grammar of architecture description lan-
guages. However, the details of the algorithm are best understood by examining the Teal code for
pattern matching.

2The nonterminalsid or meta , architectural description , startblock , end-
block , opt semi , segment metavar , andattribute value are defined in the Acme
grammar, below.

14

[token(map, key)],
id_or_meta(Id),
[token(with, key)],
startblock,
maplet_list(Maplets),
endblock.

maplet_list([Maplet|Maplets]) -->
maplet(Maplet),
[token(’;’, misc)],
maplet_list(Maplets).

maplet_list([Maplet]) -->
maplet(Maplet),
opt_semi.

maplet(maplet([From], [To])) -->
segment_metavar(From),
[token(to, key)],
segment_metavar(To).

maplet(maplet(From, To)) -->
attribute_value(From),
[token(to, key)],
attribute_value(To).

An additional benefit of the exclusive concentration on abstraction is that the
pattern variable notation can be extended to give meaningful names to “new”
objects introduced at the abstract level. For example, the@.(@c,@n) indi-
cates that the name for the new object bound to this variable should be the re-
sult of joining the name for the object bound@cand the name for the object
bound to@nby a dot, resulting in an Acme “qualified name”. Typically, this
sort of variable is used when@cis bound to a component, and@nis bound to
some object that is uniquely identified by its name within the component, but
not globally. Similarly,@&(@n1,@2)indicates that names should be joined by
and , and@_(@n1,@n2)that they should be joined by an underscore. (Also,
@*(@@list1,@@list2) is a variable bound to the result of appending the
list of objects that is bound to@@list1 to the list of objects that is bound to
@@list2 .)

As the above example of a Teal pattern illustrates, the bulk of the abstraction
pattern grammar required is a grammar for Acme, extended with pattern variables.
The following is our extended Acme grammar, expressed in terms of Prolog gram-
mar rules, that we employed. It is based on a grammar written by Fred Gilham
of SRI (gilham@csl.sri.com) for use with a recursive descent parser impl-
mented in Common Lisp that is part of the design-time portion of the Teal toolkit.
Gilham’s grammar was based in turn upon a Popart grammar for Acme (without
metavariables) written by Dave Wile (wile@teknowledge.com), one of the
principal designers of Acme.

15

architectural_description(architectural_description(MdeclL, SysL)) -->
meta_declaration_list(MdeclL),
system_list(SysL).

meta_declaration_list([MDecl]) -->
meta_declaration(MDecl).

meta_declaration_list([MDecl|MdeclL]) -->
meta_declaration(MDecl),
[token(’;’, misc)],
meta_declaration_list(MdeclL).

meta_declaration_list([]) --> [].

meta_declaration(Id) -->
segment_metavar(Id).

meta_declaration(TypDecl) -->
type_declaration(TypDecl).

meta_declaration(Templt) -->
template(Templt).

meta_declaration(Fam) -->
family(Fam).

meta_declaration(Prop) -->
property(Prop).

meta_declaration(Props) -->
properties(Props).

family(family(TypedId, Formals, DesignRuleEltL)) -->
[token(family, key)],
typed_identifier(TypedId),
formal_parameters_or_epsilon(Formals),
[token(’=’, misc)],
startblock,
design_rules_element_list(DesignRuleEltL),
endblock.

typed_identifier(Id) -->
segment_metavar(Id).

typed_identifier(typed_identifier(IdM, TypNam)) -->
id_or_meta(IdM),
[token(’:’, misc)],
type_name(TypNam).

typed_identifier(untyped_identifier(IdM)) -->
id_or_meta(IdM).

typed_identifier_or_epsilon(TypedId) -->
typed_identifier(TypedId).

typed_identifier_or_epsilon --> [].

typed_identifier_list([TypedId|TypedIdL]) -->
typed_identifier(TypedId),
[token(’,’, misc)],
typed_identifier_list(TypedIdL).

typed_identifier_list([TypedId]) -->
typed_identifier(TypedId).

type_name_list([TypNam]) -->
type_name(TypNam).

16

type_name_list([TypNam|TypNamL]) -->
type_name(TypNam),
[token(’,’, misc)],
type_name_list(TypNamL).

type_name(Id) -->
segment_metavar(Id).

type_name(Nam) -->
acme_name(Nam).

type_name(CatLit) -->
category_literal(CatLit).

type_name(PrimPropTyp) -->
primitive_property_type(PrimPropTyp).

type_name(IdM) -->
id_or_meta(IdM).

formal_parameters_or_epsilon(FormalL) -->
[token(’(’, misc)],
formal_parameter_list(FormalL),
[token(’)’, misc)].

formal_parameters_or_epsilon([]) -->
[token(’(’, misc)],
[token(’)’, misc)].

formal_parameters_or_epsilon([]) --> [].

formal_parameter_list([Formal|FormalL]) -->
formal_parameter(Formal),
[token(’,’, misc)],
formal_parameter_list(FormalL).

formal_parameter_list([Formal]) -->
formal_parameter(Formal).

formal_parameter(Id) -->
segment_metavar(Id).

formal_parameter(formal_parameter(IdML, SynClass)) -->
id_or_meta_list(IdML),
[token(’:’, misc)],
syntactic_class(SynClass).

design_rules_element_list([DesignRulElt|DesignRulEltL]) -->
design_rules_element(DesignRulElt),
[token(’;’, misc)],
design_rules_element_list(DesignRulEltL).

design_rules_element_list([DesignRulElt]) -->
design_rules_element(DesignRulElt),
opt_semi.

design_rules_element(Id) -->
segment_metavar(Id).

design_rules_element(TypDecl) -->
type_declaration(TypDecl).

design_rules_element(Templt) -->
template(Templt).

design_rules_element(Constrs) -->
constraints(Constrs).

design_rules_element(Harn) -->

17

harness(Harn).

template(UntypdTemplt) -->
untyped_template(UntypdTemplt).

template(ComptTemplt) -->
component_template(ComptTemplt).

template(ConnctrTemplt) -->
connector_template(ConnctrTemplt).

template(PortTemplt) -->
port_template(PortTemplt).

template(RoleTemplt) -->
role_template(RoleTemplt).

untyped_template(untyped_template(TypedId, FormalL, CatLits, Defn)) -->
[token(template, key)],
typed_identifier(TypedId),
formal_parameters_or_epsilon(FormalL),
category_literals(CatLits),
[token(’=’, misc)],
definition(Defn).

category_literals(category_literals(CatLitPlus)) -->
[token(defining, key)],
[token(’(’, misc)],
category_literal_list(CatLitPlus),
[token(’)’, misc)].

category_literals(category_literals([])) --> [].
category_literals(category_literals_token(components)) --> [token(components, key)].
category_literals(category_literals_token(connectors)) --> [token(connectors, key)].
category_literals(category_literals_token(ports)) --> [token(ports, key)].
category_literals(category_literals_token(roles)) --> [token(roles, key)].
category_literals(category_literals_token(properties)) --> [token(properties, key)].

category_literal_list([CatLitNam]) -->
category_literal_name(CatLitNam).

category_literal_list([CatLitNam|CatLitPlus]) -->
category_literal_name(CatLitNam),
[token(’,’, misc)],
category_literal_list(CatLitPlus).

definition(definition(AggDesc)) -->
aggregate_description(AggDesc).

aggregate_description(aggregate_description(DeclOrHarnL)) -->
startblock,
declaration_or_harness_list(DeclOrHarnL),
endblock.

declaration_or_harness_list([DeclOrHarn]) -->
declaration_or_harness(DeclOrHarn),
opt_semi.

declaration_or_harness_list([DeclOrHarn|DeclOrHarnL]) -->
declaration_or_harness(DeclOrHarn),
[token(’;’, misc)],
declaration_or_harness_list(DeclOrHarnL).

18

declaration_or_harness(Id) -->
segment_metavar(Id).

declaration_or_harness(Decl) -->
declaration(Decl).

declaration_or_harness(Harn) -->
harness(Harn).

harness(harness(AggDesc)) -->
[token(harness, key)],
aggregate_description(AggDesc).

syntactic_class(syntactic_class(CatLitt)) -->
category_literal_type(CatLitt).

syntactic_class(syntactic_class(CatLit)) -->
category_literal(CatLit).

syntactic_class(syntactic_class(CatLits)) -->
category_literals(CatLits).

syntactic_class(syntactic_class(TypNam)) -->
type_name(TypNam).

category_literal_type(category_literal_type(CatLit, TypNam)) -->
category_literal(CatLit),
type_name(TypNam).

category_literal_name(Id) -->
segment_metavar(Id).

category_literal_name(category_literal_name(CatLit, Nam)) -->
category_literal(CatLit),
acme_name(Nam).

category_literal(category_literal(component)) --> [token(component, key)].
category_literal(category_literal(connector)) --> [token(connector, key)].
category_literal(category_literal(port)) --> [token(port, key)].
category_literal(category_literal(role)) --> [token(role, key)].
category_literal(category_literal(property)) --> [token(property, key)].

multiple(multiple_with_template(ConstL, TempltInv)) -->
[token(multiple, key)],
constituent_list(ConstL),
[token(’=’, misc)],
template_invocation(TempltInv).

multiple(multiple_with_name(ConstL, Nam)) -->
[token(multiple, key)],
[token(’(’, misc)],
constituent_list(ConstL),
[token(’)’, misc)],
[token(’=’, misc)],
acme_name(Nam).

constituents([Const]) -->
constituent(Const).

constituents([Const|Consts]) -->
constituent(Const),
[token(’,’, misc)],
constituents(Consts).

19

template_invocation(template_invocation(Nam, ParamL)) -->
acme_name(Nam),
[token(’(’, misc)],
actual_parameter_list(ParamL),
[token(’)’, misc)].

actual_parameters([Param]) -->
actual_parameter(Param).

actual_parameters([Param|Params]) -->
actual_parameter(Param),
[token(’,’, misc)],
actual_parameters(Params).

actual_parameter(Id) -->
segment_metavar(Id).

actual_parameter(actual_parameter(Con)) -->
constituent_or_name(Con).

actual_parameter(actual_parameter(ActL)) -->
actual_list(ActL).

actual_parameter(actual_parameter(AggDesc)) -->
aggregate_description(AggDesc).

constituent_or_name(Id) -->
segment_metavar(Id).

constituent_or_name(ConOrNam) -->
constituent(ConOrNam).

constituent_or_name(TempltInv) -->
template_invocation(TempltInv).

constituent_or_name(Nam) -->
acme_name(Nam).

constituent(Id) -->
segment_metavar(Id).

constituent(constituent(Compt)) -->
component(Compt).

constituent(constituent(Conctr)) -->
connector(Conctr).

constituent(constituent(Port)) -->
port(Port).

constituent(constituent(Role)) -->
role(Role).

actual_list(actual_list(ConstrL)) -->
constraint_list(ConstrL).

actual_list(actual_list(ConstL)) -->
constituent_list(ConstL).

constraint_list(MixL) -->
mixed_list(MixL).

constraint_list(Rep) -->
representation_s(Rep).

constraint_list(Prop) -->
property_s(Prop).

mixed_list(mixed_list(Constrs)) -->
startblock,
single_constraints(Constrs),

20

endblock.

single_constraints(Constr) -->
single_constraint(Constr).

single_constraints([Constr|Constrs]) -->
single_constraint(Constr),
[token(’;’, misc)],
%% !,
single_constraints(Constrs).

single_constraint(Id) -->
segment_metavar(Id).

single_constraint(constraint(Rep)) -->
representation(Rep).

single_constraint(constraint(Prop)) -->
property(Prop).

constituent_list(ConstOrNams) -->
startblock,
constituent_or_names(ConstOrNams),
endblock.

constituent_or_names(ConstOrNam) -->
constituent_or_name(ConstOrNam).

constituent_or_names([ConstOrNam|ConstOrNams]) -->
constituent_or_name(ConstOrNam),
[token(’;’, misc)],
%% !,
constituent_or_names(ConstOrNams).

description(ComptDesc) -->
component_description(ComptDesc).

description(ConctrDesc) -->
connector_description(ConctrDesc).

type_declaration(CmpTypDecl) -->
component_type_declaration(CmpTypDecl).

type_declaration(ConctrTypDecl) -->
connector_type_declaration(ConctrTypDecl).

type_declaration(PortTypDecl) -->
port_type_declaration(PortTypDecl).

type_declaration(RTypDecl) -->
role_type_declaration(RTypDecl).

type_declaration(PropTypDecl) -->
property_type_declaration(PropTypDecl).

system_list([Sys]) -->
system(Sys),
opt_semi.

system_list([Sys|SysL]) -->
system(Sys),
[token(’;’, misc)],
!,
system_list(SysL).

system(system(TypedId, DeclL)) -->

21

[token(system, key)],
typed_identifier(TypedId),
[token(’=’, misc)],
startblock,
declaration_list(DeclL),
endblock.

system(system_without_declaration(TypedId, [])) -->
[token(system, key)],
typed_identifier(TypedId).

declaration_list([Decl|DeclL]) -->
declaration(Decl),
[token(’;’, misc)],
declaration_list(DeclL).

declaration_list([Decl]) -->
declaration(Decl),
opt_semi.

declaration(Id) -->
segment_metavar(Id).

declaration(Compt) -->
component_s(Compt).

declaration(Conctr) -->
connector_s(Conctr).

declaration(Role) -->
role_s(Role).

declaration(Port) -->
port_s(Port).

declaration(Mult) -->
multiple(Mult).

declaration(AttDecl) -->
attachments_declaration(AttDecl).

declaration(Constrs) -->
constraints(Constrs).

declaration(TempltInv) -->
template_invocation(TempltInv).

component_template(component_template_defining_constituent(IdM, OptFormal, Const, Defn)) -
->

[token(component, key)],
[token(template, key)],
id_or_meta(IdM),
formal_parameters_or_epsilon(OptFormal),
[token(defining, key)],
!,
[token(’(’, misc)],
constituent(Const),
[token(’)’, misc)],
[token(’=’, misc)],
definition(Defn).

component_template(component_template(IdM, OptFormal, Defn)) -->
[token(component, key)],
[token(template, key)],
id_or_meta(IdM),
formal_parameters_or_epsilon(OptFormal),
[token(’=’, misc)],
!,

22

definition(Defn).

component_type_declaration(component_type_extension_declaration(TypNam, Nam, Compt-
Desc)) -->

[token(component, key)],
[token(type, key)],
acme_name(TypNam),
[token(extends, key)],
!,
acme_name(Nam),
[token(with, key)],
component_description(ComptDesc).

component_type_declaration(component_type_declaration(TypNam, ComptDesc)) -->
[token(component, key)],
[token(type, key)],
acme_name(TypNam),
[token(’=’, misc)],
!,
component_description(ComptDesc).

component_type_declaration(unidentified_component_type_declaration(TypNam)) -->
[token(component, key)],
[token(type, key)],
acme_name(TypNam).

component_s(Cmp) -->
component(Cmp).

component_s(Compt) -->
components(Compt).

component(component_with_description(TypedId, ComptDesc)) -->
[token(component, key)],
typed_identifier(TypedId),
[token(’=’, misc)],
!,
component_description(ComptDesc).

component(unidentified_component(TypedId)) -->
[token(component, key)],
typed_identifier(TypedId).

components(components(ComptL)) -->
[token(components, key)],
startblock,
multiple_components_list(ComptL),
endblock.

multiple_components_list([Compt|ComptL]) -->
multiple_components(Compt),
[token(’;’, misc)],
multiple_components_list(ComptL).

multiple_components_list([Compt]) -->
multiple_components(Compt),
opt_semi.

multiple_components(Id) -->
segment_metavar(Id).

multiple_components(component_list_with_decl(TypedIdL, ComptDesc)) -->

23

typed_identifier_list(TypedIdL),
[token(’=’, misc)],
component_description(ComptDesc).

multiple_components(unidentified_component_list(TypedIdL)) -->
typed_identifier_list(TypedIdL).

component_description(TempltInv) -->
template_invocation(TempltInv).

component_description(ComptDefn) -->
component_definition(ComptDefn).

component_description(ComptInst) -->
component_instantiation(ComptInst).

component_instantiation(component_instantiation_with_extension(TypNamL, ComptDesc)) -
->

[token(new, key)],
type_name_list(TypNamL),
[token(extended, key)],
[token(with, key)],
component_description(ComptDesc).

component_instantiation(component_instantiation(TypNamL)) -->
[token(new, key)],
type_name_list(TypNamL).

component_definition(component_definition(PortOrConstrsL)) -->
startblock,
port_s_or_constraints_list(PortOrConstrsL),
endblock.

port_s_or_constraints_list([PortOrConstrs|PortOrConstrsL]) -->
port_s_or_constraints(PortOrConstrs),
[token(’;’, misc)],
port_s_or_constraints_list(PortOrConstrsL).

port_s_or_constraints_list([PortOrConstrs]) -->
port_s_or_constraints(PortOrConstrs),
opt_semi.

port_s_or_constraints(Id) -->
segment_metavar(Id).

port_s_or_constraints(Port) -->
port_s(Port).

port_s_or_constraints(Constrs) -->
constraints(Constrs).

connector_template(connector_template_with_constituent(IdM, OptFormal, Const, Defn)) -
->

[token(connector, key)],
[token(template, key)],
id_or_meta(IdM),
formal_parameters_or_epsilon(OptFormal),
[token(defining, key)],
!,
[token(’(’, misc)],
constituent(Const),
[token(’)’, misc)],
[token(’=’, misc)],

24

definition(Defn).
connector_template(connector_template(IdM, OptFormal, Defn)) -->

[token(connector, key)],
[token(template, key)],
id_or_meta(IdM),
formal_parameters_or_epsilon(OptFormal),
[token(’=’, misc)],
definition(Defn).

connector_type_declaration(connector_type_declaration_with_extension(TypNam, Nam, Con-
nDesc)) -->

[token(connector, key)],
[token(type, key)],
acme_name(TypNam),
[token(extends, key)],
!,
acme_name(Nam),
[token(with, key)],
connector_description(ConnDesc).

connector_type_declaration(connector_type_declaration(TypNam, ConnDesc)) -->
[token(connector, key)],
[token(type, key)],
acme_name(TypNam),
[token(’=’, misc)],
!,
connector_description(ConnDesc).

connector_type_declaration(unidentified_connector_type_declaration(TypNam)) -->
[token(connector, key)],
[token(type, key)],
acme_name(TypNam).

connector_s(Conn) -->
connector(Conn).

connector_s(ConnL) -->
connectors(ConnL).

connector(connector(TypedId, ConnDesc)) -->
[token(connector, key)],
typed_identifier(TypedId),
[token(’=’, misc)],
!,
connector_description(ConnDesc).

connector(unidentified_connector(TypedId)) -->
[token(connector, key)],
typed_identifier(TypedId).

connectors(connectors(ConnsL)) -->
[token(connectors, key)],
startblock,
multiple_connectors_list(ConnsL),
endblock.

multiple_connectors_list([Conns|ConnsL]) -->
multiple_connectors(Conns),
[token(’;’, misc)],
multiple_connectors_list(ConnsL).

multiple_connectors_list([Conns]) -->

25

multiple_connectors(Conns),
opt_semi.

multiple_connectors(Id) -->
segment_metavar(Id).

multiple_connectors(multiple_connectors_with_description(TypedIdL, ConnDesc)) -->
typed_identifier_list(TypedIdL),
[token(’=’, misc)],
connector_description(ConnDesc).

multiple_connectors(multiple_connectors(TypedIdL)) -->
typed_identifier_list(TypedIdL).

connector_description(TempltInv) -->
template_invocation(TempltInv).

connector_description(ConnDefn) -->
connector_definition(ConnDefn).

connector_description(ConnInst) -->
connector_instantiation(ConnInst).

connector_instantiation(connector_instantiation_with_description(TypNamL, ConnDesc)) -
->

[token(new, key)],
type_name_list(TypNamL),
[token(extended, key)],
[token(with, key)],
connector_description(ConnDesc).

connector_instantiation(connector_instantiation(TypNamL)) -->
[token(new, key)],
type_name_list(TypNamL).

connector_definition(connector_definition(RoleOrConnL)) -->
startblock,
role_s_or_constraints_list(RoleOrConnL),
endblock.

role_s_or_constraints_list([RoleOrConsts|RoleOrConstsL]) -->
role_s_or_constraints(RoleOrConsts),
role_s_or_constraints_list(RoleOrConstsL).

role_s_or_constraints_list([RoleOrConsts]) -->
role_s_or_constraints(RoleOrConsts).

role_s_or_constraints(Id) -->
segment_metavar(Id).

role_s_or_constraints(Role) -->
role_s(Role).

role_s_or_constraints(Consts) -->
constraints(Consts).

port_template(port_template_with_definition(IdM, OptFormal, Const, Defn)) -->
[token(port, key)],
[token(template, key)],
id_or_meta(IdM),
formal_parameters_or_epsilon(OptFormal),
[token(defining, key)],
!,
[token(’(’, misc)],

26

constituent(Const),
[token(’)’, misc)],
[token(’=’, misc)],
definition(Defn).

port_template(port_template(IdM, OptFormal, Defn)) -->
[token(port, key)],
[token(template, key)],
id_or_meta(IdM),
formal_parameters_or_epsilon(OptFormal),
[token(’=’, misc)],
definition(Defn).

port_type_declaration(port_type_declaration_with_extension(TypNam, Nam, PortDesc)) -
->

[token(port, key)],
[token(type, key)],
acme_name(TypNam),
[token(extends, key)],
!,
acme_name(Nam),
[token(with, key)],
port_description(PortDesc).

port_type_declaration(port_type_declaration(TypNam, PortDesc)) -->
[token(port, key)],
[token(type, key)],
acme_name(TypNam),
[token(’=’, misc)],
!,
port_description(PortDesc).

port_type_declaration(unidentified_port_type_declaration(TypNam)) -->
[token(port, key)],
[token(type, key)],
acme_name(TypNam).

port_s(Port) -->
port(Port).

port_s(Ports) -->
ports(Ports).

port(port(TypedId, PortDesc)) -->
[token(port, key)],
typed_identifier(TypedId),
[token(’=’, misc)],
!,
port_description(PortDesc).

port(unidentified_port(TypedId)) -->
[token(port, key)],
typed_identifier(TypedId).

ports(ports(PortsL)) -->
[token(ports, key)],
startblock,
multiple_ports_list(PortsL),
endblock.

multiple_ports_list([Ports|PortsL]) -->

27

multiple_ports(Ports),
[token(’;’, misc)],
multiple_ports_list(PortsL).

multiple_ports_list([Ports]) -->
multiple_ports(Ports),
opt_semi.

multiple_ports(Id) -->
segment_metavar(Id).

multiple_ports(multiple_ports(TypedIdL, PortDesc)) -->
typed_identifier_list(TypedIdL),
[token(’=’, misc)],
port_description(PortDesc).

multiple_ports(unidentified_multiple_ports(TypedIdL)) -->
typed_identifier_list(TypedIdL).

port_description(TempltInv) -->
template_invocation(TempltInv).

port_description(PortDefn) -->
port_definition(PortDefn).

port_description(PortInst) -->
port_instantiation(PortInst).

port_instantiation(port_instantiation(TypNamL, PortDesc)) -->
[token(new, key)],
type_name_list(TypNamL),
[token(extended, key)],
[token(with, key)],
port_description(PortDesc).

port_instantiation(port_instantiation(TypNamL)) -->
[token(new, key)],
type_name_list(TypNamL).

port_definition(port_definition(ConstrL)) -->
startblock,
constraints_list(ConstrL),
endblock.

constraints_list([Cn]) -->
constraints(Cn),
opt_semi.

constraints_list([Cn|Cns]) -->
constraints(Cn),
[token(’;’, misc)],
constraints_list(Cns).

role_template(role_template_with_definition(IdM, OptFormal, Const, Defn)) -->
[token(role, key)],
[token(template, key)],
id_or_meta(IdM),
formal_parameters_or_epsilon(OptFormal),
[token(defining, key)],
!,
[token(’(’, misc)],
constituent(Const),
[token(’)’, misc)],
[token(’=’, misc)],

28

definition(Defn).
role_template(role_template(IdM, OptFormal, Defn)) -->

[token(role, key)],
[token(template, key)],
id_or_meta(IdM),
formal_parameters_or_epsilon(OptFormal),
[token(’=’, misc)],
definition(Defn).

role_type_declaration(role_type_declaration_with_extension(TypNam, Nam, Cd)) -->
[token(role, key)],
[token(type, key)],
acme_name(TypNam),
[extends],
!,
acme_name(Nam),
[token(with, key)],
role_description(Cd).

role_type_declaration(role_type_declaration(TypNam, RoleDesc)) -->
[token(role, key)],
[token(type, key)],
acme_name(TypNam),
[token(’=’, misc)],
!,
role_description(RoleDesc).

role_type_declaration(unidentified_role_type_declaration(TypNam)) -->
[token(role, key)],
[token(type, key)],
acme_name(TypNam).

role_s(Role) -->
role(Role).

role_s(Roles) -->
roles(Roles).

role(role(TypedId, RoleDesc)) -->
[token(role, key)],
typed_identifier(TypedId),
[token(’=’, misc)],
!,
role_description(RoleDesc).

role(unidentified_role(TypedId)) -->
[token(role, key)],
typed_identifier(TypedId).

roles(roles(RolesL)) -->
[token(roles, key)],
startblock,
multiple_roles_list(RolesL),
endblock.

multiple_roles_list([Roles|RolesL]) -->
multiple_roles(Roles),
[token(’;’, misc)],
multiple_roles_list(RolesL).

multiple_roles_list([Roles]) -->

29

multiple_roles(Roles),
opt_semi.

multiple_roles(Id) -->
segment_metavar(Id).

multiple_roles(multiple_roles(TypedIdL, RoleDesc)) -->
typed_identifier_list(TypedIdL),
[token(’=’, misc)],
role_description(RoleDesc).

multiple_roles(unidentified_multiple_roles(TypedIdL)) -->
typed_identifier_list(TypedIdL).

role_description(TempltInv) -->
template_invocation(TempltInv).

role_description(RoleDefn) -->
role_definition(RoleDefn).

role_description(RoleInst) -->
role_instantiation(RoleInst).

role_instantiation(role_instantiation(TypNamL, RoleDesc)) -->
[token(new, key)],
type_name_list(TypNamL),
[token(extended, key)],
[token(with, key)],
role_description(RoleDesc).

role_instantiation(role_instantiation(TypNamL)) -->
[token(new, key)],
type_name_list(TypNamL).

role_definition(role_definition(ConstL)) -->
startblock,
constraints_list(ConstL),
endblock.

attachments_declaration(Attach) -->
attachments_decl(Attach).

attachments_declaration(Attach) -->
attachment_decl(Attach).

attachment_decl(attachment_decl(Attach)) -->
[token(attachment, key)],
attachment(Attach).

attachments_decl(attachments_decl(Attach)) -->
[token(attachments, key)],
startblock,
attachment_or_constraint_list(Attach),
endblock.

attachment_or_constraint_list([Attach]) -->
attachment_or_constraints(Attach),
opt_semi.

attachment_or_constraint_list([Attach|AttachL]) -->
attachment_or_constraints(Attach),
[token(’;’, misc)],
attachment_or_constraint_list(AttachL).

30

attachment_or_constraints(Id) -->
segment_metavar(Id).

attachment_or_constraints(Attach) -->
attachment(Attach).

attachment_or_constraints(ConstrL) -->
constraints(ConstrL).

attachment(attachment(PortNam, RoleNam)) -->
acme_name(PortNam),
[token(to, key)],
acme_name(RoleNam).

constraints(Id) -->
segment_metavar(Id).

constraints(Prop) -->
property_s(Prop).

constraints(Rep) -->
representation_s(Rep).

representation_s(Rep) -->
representation(Rep).

representation_s(Reps) -->
representations(Reps).

representation(representation(Id, SingRep)) -->
[token(representation, key)],
id_or_meta(Id),
[token(’=’, misc)],
!,
single_representation(SingRep).

representation(unnamed_representation(SingRep)) -->
[token(representation, key)],
single_representation(SingRep).

representations(representations(RepL)) -->
[token(representations, key)],
startblock,
representation_list(RepL),
endblock.

representation_list([Rep|RepL]) -->
single_representation(Rep),
[token(’;’, misc)],
representation_list(RepL).

representation_list([Rep]) -->
single_representation(Rep),
opt_semi.

single_representation(Id) -->
segment_metavar(Id).

single_representation(single_representation(Sys, BindMapDefn)) -->
startblock,
system(Sys),
bindings_map_definition(BindMapDefn),
endblock.

single_representation(unbound_single_representation(Sys)) -->

31

startblock,
system(Sys),
endblock.

abstraction_map(BindMapDefn) -->
bindings_map_definition(BindMapDefn).

abstraction_map(Omd) -->
other_map_definition(Omd).

abstraction_map([]) --> [].

property_s_list([Prop|PropL]) -->
property_s(Prop),
[token(’;’, misc)],
property_s_list(PropL).

property_s_list([Prop]) -->
property_s(Prop),
opt_semi.

property_s_list([]) --> [].

bindings_map_definition(bindings_map_definition(TypedId, BindL)) -->
[token(bindings, key)],
typed_identifier(TypedId),
[token(’=’, misc)],
!,
startblock,
bindings_list(BindL),
endblock.

bindings_map_definition(unnamed_bindings_map_definition(BindL)) -->
[token(bindings, key)],
startblock,
bindings_list(BindL),
endblock.

bindings_list([Bind|BindL]) -->
binding(Bind),
[token(’;’, misc)],
bindings_list(BindL).

bindings_list([Bind]) -->
binding(Bind),
opt_semi.

binding(Id) -->
segment_metavar(Id).

binding(binding(BoundNam, BindNam)) -->
acme_name(BoundNam),
[token(to, key)],
acme_name(BindNam).

other_map_definition(other_map_definition(Lang, ExtPars)) -->
language(Lang),
[token(’:’, misc)],
externally_parsed(ExtPars).

single_predicate(Id) -->
segment_metavar(Id).

32

single_predicate(predicate(Pred, MetaPred)) -->
actual_predicate(Pred),
meta_predicate_or_epsilon(MetaPred).

actual_predicate(ExtensDesc) -->
extension_description(ExtensDesc).

actual_predicate(RawProp) -->
raw_property(RawProp).

meta_predicate_or_epsilon(MetaPred) -->
meta_predicate(MetaPred).

meta_predicate_or_epsilon([]) --> [].

meta_predicate(meta_predicate(ConstrL)) -->
[token(’<<’, misc)],
constraints_plus(ConstrL),
[token(’>>’, misc)].

constraints_plus([Consts]) -->
constraints(Consts).

constraints_plus([Consts|ConstrL]) -->
constraints(Consts),
[token(’;’, misc)],
constraints_plus(ConstrL).

extension_description(extension_description(Lang, ExtPars)) -->
language(Lang),
[token(’:’, misc)],
externally_parsed(ExtPars).

language(language(Nam)) -->
acme_name(Nam).

externally_parsed([]) --> [].

raw_property(typed_raw_property(Attr, PropTyp, AttrVal)) -->
attribute(Attr),
[token(’:’, misc)],
property_type(PropTyp),
[token(’=’, misc)],
!,
attribute_value(AttrVal).

raw_property(raw_property(Attr, AttrVal)) -->
attribute(Attr),
[token(’=’, misc)],
!,
attribute_value(AttrVal).

raw_property(unidentified_raw_property(Attr, PropTyp)) -->
attribute(Attr),
[token(’:’, misc)],
property_type(PropTyp).

property_type_declaration(property_type_declaration(TypNam, PropTyp)) -->
[token(property, key)],
[token(type, key)],
acme_name(TypNam),

33

[token(’=’, misc)],
property_type(PropTyp).

property_type_declaration(external_property_type_declaration(TypNam, Lang)) -->
[token(property, key)],
[token(type, key)],
acme_name(TypNam),
external(Lang).

property_s(Id) -->
segment_metavar(Id).

property_s(Prop) -->
property(Prop).

property_s(Props) -->
properties(Props).

property(property(SingPred)) -->
[token(property, key)],
single_predicate(SingPred),
opt_semi.

properties(properties(SingPredL)) -->
[token(properties, key)],
startblock,
single_predicate_list(SingPredL),
endblock.

single_predicate_list([SingPred]) -->
single_predicate(SingPred),
opt_semi.

single_predicate_list([SingPred|SingPredl]) -->
single_predicate(SingPred),
[token(’;’, misc)],
single_predicate_list(SingPredl).

property_type(PrimPropTyp) -->
primitive_property_type(PrimPropTyp).

property_type(PropTypDesc) -->
property_type_description(PropTypDesc).

property_type(property_type(Nam)) -->
acme_name(Nam).

external(external_language(Lang)) -->
[token(external, key)],
[token(language, key)],
language(Lang).

attribute(attribute(Nam)) -->
acme_name(Nam).

attribute_value(Id) --> segment_metavar(Id).
attribute_value(Str) --> string(Str).
attribute_value(Num) --> number(Num).
attribute_value(Nam) --> acme_name(Nam).
attribute_value(Set) --> set(Set).
attribute_value(Rec) --> record(Rec).
attribute_value(Seq) --> sequence(Seq).

34

field_and_value(Id) -->
segment_metavar(Id).

field_and_value(field_and_value(Nam, AttrVal)) -->
acme_name(Nam),
[token(’=’, misc)],
attribute_value(AttrVal).

primitive_property_type(primitive_property_type(float)) -->
[token(float, key)].

primitive_property_type(primitive_property_type(int)) -->
[token(int, key)].

primitive_property_type(primitive_property_type(char)) -->
[token(char, key)].

primitive_property_type(primitive_property_type(string)) -->
[token(string, key)].

primitive_property_type(primitive_property_type(boolean)) -->
[token(boolean, key)].

primitive_property_type(primitive_property_type(any)) -->
[token(any, key)].

property_type_description(RecDecl) -->
record_declaration(RecDecl).

property_type_description(SetDecl) -->
set_declaration(SetDecl).

property_type_description(SeqDecl) -->
sequence_declaration(SeqDecl).

property_type_description(EnumDecl) -->
enum_declaration(EnumDecl).

record_declaration(open_record_declaration(RecParamL)) -->
[token(open, key)],
!,
[token(record, key)],
[token(’[’, misc)],
record_parameter_list(RecParamL),
[token(’]’, misc)].

record_declaration(record_declaration(RecParamL)) -->
[token(record, key)],
[token(’[’, misc)],
record_parameter_list(RecParamL),
[token(’]’, misc)].

record_parameter_list([RecParam|RecParamL]) -->
record_parameter(RecParam),
[token(’;’, misc)],
record_parameter_list(RecParamL).

record_parameter_list([RecParam]) -->
record_parameter(RecParam),
opt_semi.

record_parameter(Id) -->
segment_metavar(Id).

record_parameter(record_parameter(IdML, TypNam)) -->
id_or_meta_list(IdML),
[token(’:’, misc)],
type_name(TypNam).

35

record(record(FieldValL)) -->
[token(’[’, misc)],
field_and_value_list(FieldValL),
[token(’]’, misc)].

set_declaration(set_declaration(TypNam)) -->
[token(set, key)],
startblock,
type_name(TypNam),
endblock.

set(set(AttValL)) -->
[token(’{’, misc)],
attribute_value_list(AttValL),
[token(’}’, misc)].

sequence_declaration(sequence_declaration(TypNam)) -->
[token(sequence, key)],
[token(’<’, misc)],
!,
type_name(TypNam),
[token(’>’, misc)].

sequence_declaration(empty_sequence_declaration) -->
[token(sequence, key)].

sequence(sequence(AttrValL)) -->
[token(’<’, misc)],
attribute_value_list(AttrValL),
[token(’>’, misc)].

enum_declaration(enum_declaration(NamL)) -->
[token(enum, key)],
startblock,
name_plus(NamL),
endblock.

field_and_value_list([FieldVal]) -->
field_and_value(FieldVal).

field_and_value_list([FieldVal|FieldValL]) -->
field_and_value(FieldVal),
[token(’;’, misc)],
field_and_value_list(FieldValL).

attribute_value_list([AttrVal|AttrValL]) -->
attribute_value(AttrVal),
[token(’,’, misc)],
!,
attribute_value_list(AttrValL).

attribute_value_list([AttrVal]) -->
attribute_value(AttrVal).

name_plus([Nam|NamL]) -->
acme_name(Nam),
[token(’,’, misc)],
name_plus(NamL).

36

name_plus([Nam]) -->
acme_name(Nam).

acme_name(Id) -->
segment_metavar(Id).

acme_name(dotted_acme_name(Id1, Id2)) -->
id_or_meta(Id1),
[token(’.’, misc)],
!,
id_or_meta(Id2).

acme_name(uparrowed_acme_name(Id1, Id2)) -->
id_or_meta(Id1),
[token(’ˆ’, misc)],
!,
id_or_meta(Id2).

acme_name(IdM) -->
id_or_meta(IdM).

id_or_meta_list([IdM|IdML]) -->
id_or_meta(IdM),
[token(’,’, misc)],
id_or_meta_list(IdML).

id_or_meta_list([IdM]) -->
id_or_meta(IdM).

id_or_meta(Id) -->
segment_metavar(Id).

id_or_meta(Id) -->
metavar(Id).

id_or_meta(id(Id)) -->
acme_identifier(Id).

metavar(conjoined_metavars(Ms)) -->
[token(’@’, misc)],
[token(’&’, misc)],
!,
[token(’(’, misc)],
metavar_list(Ms),
[token(’)’, misc)].

metavar(generated_metavar(R)) -->
[token(’@’, misc)],
[token(’$’, misc)],
!,
[token(’(’, misc)],
acme_identifier(R),
[token(’)’, misc)].

metavar(metavar(Id)) -->
[token(’@’, misc)],
acme_identifier(Id).

metavar_list([M|Ms]) -->
metavar(M),
[token(’,’, misc)],
metavar_list(Ms).

metavar_list([M]) -->
metavar(M).

37

acme_identifier(Id) -->
[Tok],
{Tok = token(Id, id)}.

segment_metavar(concatenated_segment_metavars(SMList)) -->
[token(’@’, misc)],
[token(’*’, misc)],
!,
[token(’(’, misc)],
segment_metavar_list(SMList),
[token(’)’, misc)].

segment_metavar(renamed_segment_metavar(M, SM)) -->
[token(’@’, misc)],
[token(’_’, misc)],
!,
[token(’(’, misc)],
metavar(M),
[token(’,’, misc)],
segment_metavar(SM),
[token(’)’, misc)].

segment_metavar(dotted_segment_metavar(M, SM)) -->
[token(’@’, misc)],
[token(’.’, misc)],
!,
[token(’(’, misc)],
metavar(M),
[token(’,’, misc)],
segment_metavar(SM),
[token(’)’, misc)].

segment_metavar(segment_metavar(Id)) -->
[token(’@@’, misc)],
acme_identifier(Id).

segment_metavar_list([SM|SMList]) -->
segment_metavar(SM),
[token(’,’, misc)],
segment_metavar_list(SMList).

segment_metavar_list([SM]) -->
segment_metavar(SM).

string(string(Str)) -->
[Tok],
{Tok = token(Str, str)}.

number(number(Num)) -->
[Tok],
{Tok = token(Num, num)}.

startblock -->
[token(’{’, misc)].

endblock -->
[token(’}’, misc)],
opt_semi.

opt_semi --> [token(’;’, misc)].
opt_semi --> [].

38

3.2 Developing Abstraction Transformations

The tool set delivered includes two useful tools for gauge development that are
not actually part of the final gauge itself. (Tools that are part of the gauges will be
discussed in the context of the examples, below.)

The parser that is part of the gauges essentially assumes that the descriptions
and abstraction rules it deals with are syntactically correct, in the sense that, in
case of a syntactic error, it simply fails without providing a useful message indi-
cating the likely location of the error. This is quite common for parsers imple-
mented using the Prolog grammar rule mechanism. In recursive descent parsing,
failure of an attempted parse is no reason to suppose that a grammatical error has
been discovered, for, most often, backtracking will discover a successful alterna-
tive parse.

The tool set includes an enhanced version of the extended Acme parser that
keeps track of the farthest it gets in the list of tokens, and reports that location as
the likely source of an error when it ultimately fails. While much less efficient than
the standard parser, it is very useful in identifying syntactic errors in architecture
descriptions and abstraction rules. This version of the parser is in the fileacme-
gr-rules-counting.pl . It is used just like any other Prolog parser.

In gauges, abstraction transformations are applied automatically to update ab-
stract models. Although abstraction transformations are relatively easy to write,
some debugging is likely to be necessary. A good first step in developing a stock
of abstraction transformations for a gauge is to try applying them “by hand”,
using the Acme mapping generator (AMG) tool, which is included as part of
our DASADA technology distribution. AMG is an interactive tool in which an
architectural description, an abstraction rule, and match (i.e., a set of pattern vari-
able bindings) are selected by the user. AMG then generates the abstract descrip-
tion, and adds it to the stock of descriptions available for further transformation.
This sort of manual generation of abstract descriptions helps both in eliminating
semantic bugs in the abstraction rules and in defining an automatic abstraction
strategy for use in the gauge. The source code for AMG can be found in the file
amg.pl .

39

Chapter 4

A Dependability Gauge for Failure
Tolerance

The first dependability gauge suite we have implemented measures a simple failure-
tolerance property of our dynamically reconfigurable version of SEAS. The anal-
ysis technology employed is model checking.

4.1 SEAS

SEAS is a component-based system, in that it uses several pre-existing general-
purpose AIC software packages as components. Here is a description of the base
architecture for this version of SEAS, which is simply a codification of a descrip-
tion that the AIC provides in Acme.1 While quite simple, considering the size
of SEAS, it turns out to be adequate for our purposes, as the failure-tolerance
property of interest is specifically concerned with failure of the persistent store.

system seas = {
component cl_http_server = {

ports {
http_server_port_for_browser;
http_server_port_for_html_generator;

};
property functions_performed = { web_service };

1The architecture description used in the demonstration actually has several additional propo-
erties of components and connectors specified that are relevant to other gauges, but not to the
failure-tolerance gauge. In addition, the component representing the client interacting with SEAS
has been ignored. These have been omitted for simplicity, and, as a result, the length of the de-
scription has been reduced by about one-half.

40

property allocated_to_machines = { seas_machine };
};
component seas_html_generator = {

ports {
html_generator_port_for_server;
html_generator_port_for_grasper;
html_generator_port_for_gister;
html_generator_port_for_gkb_editor;
html_generator_port_for_ontology_mgr;

};
property functions_performed = { html_generation };
property allocated_to_machines = { seas_machine };

};
component grasper = {

ports {
grasper_port_for_html_generator;
grasper_port_for_gister;
grasper_port_for_gkb_editor;

};
property functions_performed = { summary_graphics_production };
property allocated_to_machines = { seas_machine };

};
component gister = {

ports {
gister_port_for_grasper;
gister_port_for_html_generator;

};
property functions_performed = { answer_calculation };
property allocated_to_machines = { seas_machine };

};
component generic_knowledge_base_editor = {

ports {
gkb_editor_port_for_grasper;
gkb_editor_port_for_html_generator;
gkb_editor_port_for_ocelot;

};
property functions_performed = { knowledge_base_interface };
property allocated_to_machines = { seas_machine };

};
component ontology_manager = {

ports {
ontology_mgr_port_for_html_generator;
ontology_mgr_port_for_ocelot;

};
property functions_performed = { answer_update };

property allocated_to_machines = { seas_machine };
};
component ocelot_knowledge_base_management_system = {

ports {
ocelot_port_for_gkb_editor;
ocelot_port_for_ontology_mgr;
ocelot_port_for_perk;

};
property functions_performed = { updates_frame_values };
property allocated_to_machines = { seas_machine };

};
component perk_storage_system = {

41

ports {
perk_port_for_ocelot;
perk_port_for_persistent_store;

};
property functions_performed = { maintain_persistent_store };
property allocated_to_machines = { seas_machine };

};
component persistent_store = {

ports {
persistent_store_port_for_perk;

};
property functions_performed = { persistent_storage };
property allocated_to_machines = { seas_machine };

};
connector http_server_to_html_generator = {

roles {
http_server_role_in_connector_to_html_generator;
html_generator_role_in_connector_to_http_server;

};
};

connector html_generator_to_grasper = {
roles {

html_generator_role_in_connector_to_grasper;
grasper_role_in_connector_to_html_generator;

};
};
connector html_generator_to_gister = {

roles {
html_generator_role_in_connector_to_gister;
gister_role_in_connector_to_html_generator;

};
};
connector html_generator_to_gkb_editor = {

roles {
html_generator_role_in_connector_to_gkb_editor;
gkb_editor_role_in_connector_to_html_generator;

};
};
connector html_generator_to_ontology_mgr = {

roles {
html_generator_role_in_connector_to_ontology_mgr;
ontology_mgr_role_in_connector_to_html_generator;

};
};
connector grasper_to_gister = {

roles {
grasper_role_in_connector_to_gister;
gister_role_in_connector_to_grasper;

};
};
connector grasper_to_gkb_editor = {

roles {
grasper_role_in_connector_to_gkb_editor;
gkb_editor_role_in_connector_to_grasper;

};
};
connector gkb_editor_to_ocelot = {

42

roles {
gkb_editor_role_in_connector_to_ocelot;
ocelot_role_in_connector_to_gkb_editor;

};
};
connector ontology_mgr_to_ocelot = {

roles {
ontology_mgr_role_in_connector_to_ocelot;
ocelot_role_in_connector_to_ontology_mgr;

};
};
connector ocelot_to_perk = {

roles {
ocelot_role_in_connector_to_perk;
perk_role_in_connector_to_ocelot;

};
};
connector perk_to_persistent_store = {

roles {
perk_role_in_connector_to_persistent_store;
persistent_store_role_in_connector_to_perk;

};
};
attachments {

http_server_port_for_html_generator
to http_server_role_in_connector_to_html_generator;

html_generator_port_for_http_server
to html_generator_role_in_connector_to_http_server;

html_generator_port_for_grasper
to html_generator_role_in_connector_to_grasper;

grasper_port_for_html_generator
to grasper_role_in_connector_to_html_generator;

html_generator_port_for_gister
to html_generator_role_in_connector_to_gister;

gister_port_for_html_generator
to gister_role_in_connector_to_html_generator;

html_generator_port_for_gkb_editor
to html_generator_role_in_connector_to_gkb_editor;

gkb_editor_port_for_html_generator
to gkb_editor_role_in_connector_to_html_generator;

html_generator_port_for_ontology_mgr
to html_generator_role_in_connector_to_ontology_mgr;

ontology_mgr_port_for_html_generator
to ontology_mgr_role_in_connector_to_html_generator;

grasper_port_for_gister
to grasper_role_in_connector_to_gister;

gister_port_for_grasper
to gister_role_in_connector_to_grasper;

grasper_port_for_gkb_editor
to grasper_role_in_connector_to_gkb_editor;

gkb_editor_port_for_grasper
to gkb_editor_role_in_connector_to_grasper;

gkb_editor_port_for_ocelot
to gkb_editor_role_in_connector_to_ocelot;

ocelot_port_for_gkb_editor
to ocelot_role_in_connector_to_gkb_editor;

ontology_mgr_port_for_ocelot

43

to ontology_mgr_role_in_connector_to_ocelot;
ocelot_port_for_ontology_mgr

to ocelot_role_in_connector_to_ontology_mgr;
ocelot_port_for_perk

to ocelot_role_in_connector_to_perk;
perk_port_for_ocelot

to perk_role_in_connector_to_ocelot;
perk_port_for_persistent_store

to perk_role_in_connector_to_persistent_store;
persistent_store_port_for_perk

to persistent_store_role_in_connector_to_perk;
};

}

4.2 Abstraction

The basic idea in abstraction is to eliminate all information in the specification that
is irrelevant to determining whether the architecture is adequately failure tolerant.
In order to do so, we repeatedly apply the two abstraction transformations.2 The

2As noted earlier, some properties of components and connectors irrelevant to this gauge have
been omitted from the SEAS architectural description in the interest of brevity. Either before or
after applying the bundling transformations, these properties should be stripped off to achieve
maximum abstraction. The stripping transformations are gauge specific, and have the form

transformation strip irrelevant component property from
system @s = {

component @c = {
property @prop = @val;
@@rest c

};
@@rest s

}
to

system @s = {
component @c = {

@@rest c
};
@@rest s

}
provided

code{
not member(@prop, gauge-specific list of properties)

}

and

transformation strip irrelevant connector property from
system @s = {

connector @k = {
property @prop = @val;
@@rest k

};
@@rest s

}
to

system @s = {
component @k = {

@@rest k

44

first says that a connected pair of noncritical components can be collapsed to a
single component.

transformation bundle_noncritical_components from
system @s = {

component @c1 = {
ports {@op; @@ps1};
property functions_computed = {@@fns1};
property criticality: int = 0;

};
component @c2 = {

ports {@ip; @@ps2};
property functions_computed = {@@fns2};
property criticality: int = @cr;

};
connector @k = { roles {@ir; @or}};
attachments {

@k.@ir to @c1.@op;
@k.@or to @c2.@ip;
@@att

};
@@rest

}
to

system @s = {
component @&(@c1, @c2) = {

ports {@*(@_(@c1,@@ps1), @_(@c2,@@ps2))};
property functions_computed = {@*(@@fns1, @@fns2)};
property criticality: int = @cr;

};
attachments {

@@att
};
@@rest

}
where

map connected_components_to_component with {

};
@@rest s

}
provided

code{
not member(@prop, gauge-specific list of properties)

}

The advantage of stripping them prior to bundling is that one need not worry about maintaining
the values of these properties when bundling. The advantage of stripping them after bundling is
that the bundling rules can be written in a form that is less sensitive to the properties present.
Since making the rules as general as possible is crucial in building a stock of reusable abstraction
transformations, we have opted for the latter approach. But rather than dealing with the fully
general case in discussing this example, a single “irrelevant” property,functions computed ,
has been left in the description, and the rules have been written to maintain the value of that
property when bundling. “Irrelevant” properties in general are handled in much the same way as
the example.

45

[first_component = @c1; first_port = @c1.@op;
connecting_connector = @k; first_role = @k.@ir; second_role = @k.@or;
second_component = @c2; second_port = @c2.@ip]

to @&(@c1, @c2);
@.(@c1,@@ps1) to @.(@&(@c1,@c2),@_(@c1,@@ps1));
@.(@c2,@@ps2) to @.(@&(@c1,@c2),@_(@c2,@@ps2));

}
provided

// A simple example of the constrint capability: value of @cr can
// be anything that can be proved to be equal to 0, not just a literal ’0’
code{

@cr = 0
}

The second transformation used in abstraction says that multiple connectors
between a pair of components can be collapsed to a single connector.

transformation bundle_connectors from
system @s = {

component @c1 = { ports {@op1; @op2; @@ps1; }};
component @c2 = { ports {@ip1; @ip2; @@ps2; } };
connector @k1 = { roles {@or1; @ir1; @@rs1; }};
connector @k2 = { roles {@or2; @ir2; @@rs2; }};
attachments {

@k1.@ir1 to @c1.@op1;
@k1.@or1 to @c2.@ip1;
@k2.@ir2 to @c1.@op2;
@k2.@or2 to @c2.@ip2;
@@att;

};
@@rest;

}
to

system @s = {
component @c1 = { ports {@op1; @@ps1; }};
component @c2 = { ports {@ip1; @@ps2; }};
connector @k1 = { roles {@or1; @ir1; @@rs1; }};
attachments {

@k1.@ir1 to @c1.@op1;
@k1.@or1 to @c2.@ip1;
@@att;

};
@@rest;

}
where

map connectors_to_connector with {
<@op1, @op2> to @op1;
<@ip1, @ip2> to @ip1;
<@k1, @k2> to @k1;
<@or1, @op2> to @or1;
<@ir1, @ir2> to @ir1;

}

Clearly, neither of these bundling transformations can produce an abstract ar-
chitectural description that satisfies the failure-tolerance requirement from a con-

46

crete architectural description that does not.3

Any sequence of applications of these two abstraction transformations pre-
serves the property of interest. Our goal is to devise a strategy for applying the
transformations that results in a sufficiently abstract description for an appropriate
variety of architectures.

An effective strategy description must address both the selection of transfor-
mations at each step in the abstraction process and the selection of bindings of pat-
tern variables used when matching each transformation against the architecture.
Strategies can range from the trivial and inflexible — fixed lists of transformations
and bindings — to more sophisticated, loosely specified sequences of applications
in which aspects of one transformation application (such as bindings) inform the
choices of transformations later on.

In many cases, bindings need not be specified directly. Indeed, “robust” strate-
gies that may be applied to a variety of architectures cannot rely heavily on specific
bindings. If we ignore bindings, a straightforward approach to representing simple
strategies is to define recursively applicable primitives for repeating or selectively
applying transformations or strategies. For example, we can write

σ1 σ2

to represent the strategy “apply strategyσ1, then apply the strategyσ2”,

σ∗

to represent the strategy of repeatedly applyingσ until it is no longer applicable
(i.e., until either it can no longer be applied because preconditions for its applica-
tion are not satisfied or a fixed point has been reached), and

[σ]

to indicate “optional” application ofσ (in other words, application ofσ if and only
if it is applicable). A moment’s thought reveals that a strategy such as

(T2
∗ T1)

∗

whereT1 isbundle noncritical components andT2 isbundle connectors ,
is sufficient to generate a “maximally abstract” — relative to the failure-tolerance
property of interest — representation of our example system:

3The co-preservation of failure tolerance could be formally verified by proving that the trans-
formations always produce an abstract architecture whose theory is faithfully interpretable in the
theory of the concrete architecture [9, 14, 15].

47

system seas = {
component seas_main = {

ports {
seas_main_port_for_browser;
seas_main_port_for_persistent_store;

};
property functions_performed = {

web_service,
html_generation,
summary_graphics_production,
answer_calculation,
knowledge_base_interface,
answer_update,
updates_frame_values,
maintain_persistent_store

};
property allocated_to_machines = { seas_machine };

};
component persistent_store = {

ports {
persistent_store_port_for_seas_main;

};
property functions_performed = { persistent_storage };
property allocated_to_machines = { seas_machine };

};
connector seas_main_to_persistent_store = {

roles {
seas_main_role_in_connector_to_persistent_store;
persistent_store_role_in_connector_to_seas_main; };

};
attachments {

seas_main_port_for_persistent_store
to seas_main_role_in_connector_to_persistent_store;

persistent_store_port_for_seas_main
to persistent_store_role_in_connector_to_seas_main;

};
}

4.3 Analysis

In the analysis phase of the gauge, the failure-tolerance property and the abstract
Acme description are “translated” into Promela, the input language of the Spin
model checker. The result of this translation is

bit compromised_seas_main = 0; /* Initially, no intrusion */
bit compromised_persistent_store = 0; /* Initially, no intrusion */
int attack_attempts = 0;

proctype attack_seas(){
reattack:

if
:: !compromised_persistent_store -->

reattack_persistent_store:

48

if
:: attack_attempts++;

printf("It took %d attacks to compromise persistent_store.\\n",
attack_attempts); /* Record before failure state */

compromised_persistent_store = 1; /* Attack succeeds */
goto reattack

:: attack_attempts++;
goto reattack_persistent_store /* Attack fails */

fi
:: !compromised_seas_main -->

reattack_seas_main:
if
:: attack_attempts++;

printf("It took %d attacks to compromise seas_main.\\n",
attack_attempts);

compromised_seas_main = 1; /* Attack succeeds */
goto reattack

:: attack_attempts++;
goto reattack_seas_main /* Attack fails */

fi
:: else --> skip

fi;
printf("It took %d attack attempts to compromise all components.\\n",

attack_attempts)
};

init{
run attack_seas()

}

which, when analyzed by Spin, determines that a single successful attack on the
right component can result in system failure.

4.4 Update

An obvious way to increase the level of failure tolerance is to make the critical
component redundant (using diverse implementations, with diverse vulnerabili-
ties, if intrusion tolerance as well as fault tolerance is required). Toggling the
SEAS reconfiguration switch that duplicates and distributes the redundant storage
component results in a new concrete architecture:

system seas = {
component cl_http_server = {

ports {
http_server_port_for_browser;
http_server_port_for_html_generator;

};
property functions_performed = { web_service };
property allocated_to_machines = { seas_machine };

};
component seas_html_generator = {

49

ports {
html_generator_port_for_server;
html_generator_port_for_grasper;
html_generator_port_for_gister;
html_generator_port_for_gkb_editor;
html_generator_port_for_ontology_mgr;

};
property functions_performed = { html_generation };
property allocated_to_machines = { seas_machine };

};
component grasper = {

ports {
grasper_port_for_html_generator;
grasper_port_for_gister;
grasper_port_for_gkb_editor;

};
property functions_performed = { summary_graphics_production };
property allocated_to_machines = { seas_machine };

};
component gister = {

ports {
gister_port_for_grasper;
gister_port_for_html_generator;

};
property functions_performed = { answer_calculation };
property allocated_to_machines = { seas_machine };

};
component generic_knowledge_base_editor = {

ports {
gkb_editor_port_for_grasper;
gkb_editor_port_for_html_generator;
gkb_editor_port_for_ocelot;

};
property functions_performed = { knowledge_base_interface };
property allocated_to_machines = { seas_machine };

};
component ontology_manager = {

ports {
ontology_mgr_port_for_html_generator;
ontology_mgr_port_for_ocelot;

};
property functions_performed = { answer_update };

property allocated_to_machines = { seas_machine };
};
component ocelot_knowledge_base_management_system = {

ports {
ocelot_port_for_gkb_editor;
ocelot_port_for_ontology_mgr;
ocelot_port_for_perk;

};
property functions_performed = { updates_frame_values };
property allocated_to_machines = { seas_machine };

};
component perk_storage_system = {

ports {
perk_port_for_ocelot;
perk_port_for_persistent_store_1;

50

perk_port_for_persistent_store_2;
perk_port_for_persistent_store_3;

};
property functions_performed = { maintain_persistent_store };
property allocated_to_machines = { seas_machine };

};
component persistent_store_1 = {

ports {
persistent_store_1_port_for_perk;

};
property functions_performed = { persistent_storage };
property allocated_to_machines = { storage_machine_1 };

};
component persistent_store_2 = {

ports {
persistent_store_2_port_for_perk;

};
property functions_performed = { persistent_storage };
property allocated_to_machines = { storage_machine_2 };

};
component persistent_store_3 = {

ports {
persistent_store_3_port_for_perk;

};
property functions_performed = { persistent_storage };
property allocated_to_machines = { storage_machine_3 };

};
connector http_server_to_html_generator = {

roles {
http_server_role_in_connector_to_html_generator;
html_generator_role_in_connector_to_http_server;

};
};

connector html_generator_to_grasper = {
roles {

html_generator_role_in_connector_to_grasper;
grasper_role_in_connector_to_html_generator;

};
};
connector html_generator_to_gister = {

roles {
html_generator_role_in_connector_to_gister;
gister_role_in_connector_to_html_generator;

};
};
connector html_generator_to_gkb_editor = {

roles {
html_generator_role_in_connector_to_gkb_editor;
gkb_editor_role_in_connector_to_html_generator;

};
};
connector html_generator_to_ontology_mgr = {

roles {
html_generator_role_in_connector_to_ontology_mgr;
ontology_mgr_role_in_connector_to_html_generator;

};
};

51

connector grasper_to_gister = {
roles {

grasper_role_in_connector_to_gister;
gister_role_in_connector_to_grasper;

};
};
connector grasper_to_gkb_editor = {

roles {
grasper_role_in_connector_to_gkb_editor;
gkb_editor_role_in_connector_to_grasper;

};
};
connector gkb_editor_to_ocelot = {

roles {
gkb_editor_role_in_connector_to_ocelot;
ocelot_role_in_connector_to_gkb_editor;

};
};
connector ontology_mgr_to_ocelot = {

roles {
ontology_mgr_role_in_connector_to_ocelot;
ocelot_role_in_connector_to_ontology_mgr;

};
};
connector ocelot_to_perk = {

roles {
ocelot_role_in_connector_to_perk;
perk_role_in_connector_to_ocelot;

};
};
connector perk_to_persistent_store_1 = {

roles {
perk_role_in_connector_to_persistent_store_1;
persistent_store_1_role_in_connector_to_perk;

};
};
connector perk_to_persistent_store_2 = {

roles {
perk_role_in_connector_to_persistent_store_2;
persistent_store_2_role_in_connector_to_perk;

};
};
connector perk_to_persistent_store_3 = {

roles {
perk_role_in_connector_to_persistent_store_3;
persistent_store_3_role_in_connector_to_perk;

};
};
attachments {

http_server_port_for_html_generator
to http_server_role_in_connector_to_html_generator;

html_generator_port_for_http_server
to html_generator_role_in_connector_to_http_server;

html_generator_port_for_grasper
to html_generator_role_in_connector_to_grasper;

grasper_port_for_html_generator
to grasper_role_in_connector_to_html_generator;

52

html_generator_port_for_gister
to html_generator_role_in_connector_to_gister;

gister_port_for_html_generator
to gister_role_in_connector_to_html_generator;

html_generator_port_for_gkb_editor
to html_generator_role_in_connector_to_gkb_editor;

gkb_editor_port_for_html_generator
to gkb_editor_role_in_connector_to_html_generator;

html_generator_port_for_ontology_mgr
to html_generator_role_in_connector_to_ontology_mgr;

ontology_mgr_port_for_html_generator
to ontology_mgr_role_in_connector_to_html_generator;

grasper_port_for_gister
to grasper_role_in_connector_to_gister;

gister_port_for_grasper
to gister_role_in_connector_to_grasper;

grasper_port_for_gkb_editor
to grasper_role_in_connector_to_gkb_editor;

gkb_editor_port_for_grasper
to gkb_editor_role_in_connector_to_grasper;

gkb_editor_port_for_ocelot
to gkb_editor_role_in_connector_to_ocelot;

ocelot_port_for_gkb_editor
to ocelot_role_in_connector_to_gkb_editor;

ontology_mgr_port_for_ocelot
to ontology_mgr_role_in_connector_to_ocelot;

ocelot_port_for_ontology_mgr
to ocelot_role_in_connector_to_ontology_mgr;

ocelot_port_for_perk
to ocelot_role_in_connector_to_perk;

perk_port_for_ocelot
to perk_role_in_connector_to_ocelot;

perk_port_for_persistent_store_1
to perk_role_in_connector_to_persistent_store_1;

persistent_store_port_1_for_perk
to persistent_store_1_role_in_connector_to_perk;

perk_port_for_persistent_store_2
to perk_role_in_connector_to_persistent_store_2;

persistent_store_port_2_for_perk
to persistent_store_2_role_in_connector_to_perk;

perk_port_for_persistent_store_3
to perk_role_in_connector_to_persistent_store_3;

persistent_store_port_3_for_perk
to persistent_store_3_role_in_connector_to_perk;

};
}

Automatically applying the same two abstraction rules in accordance with the
same strategy produces an updated abstract description:

system seas = {
component seas_main = {

ports {
seas_main_port_for_browser;
seas_main_port_for_persistent_store;

};

53

property functions_performed = {
web_service,
html_generation,
summary_graphics_production,
answer_calculation,
knowledge_base_interface,
answer_update,
updates_frame_values,
maintain_persistent_store

};
property allocated_to_machines = { seas_machine };

};
component persistent_store_1 = {

ports {
persistent_store_1_port_for_seas_main;

};
property functions_performed = { persistent_storage };
property allocated_to_machines = { storage_machine_1 };

};
component persistent_store_2 = {

ports {
persistent_store_2_port_for_seas_main;

};
property functions_performed = { persistent_storage };
property allocated_to_machines = { storage_machine_2 };

};
component persistent_store_3 = {

ports {
persistent_store_3_port_for_seas_main;

};
property functions_performed = { persistent_storage };
property allocated_to_machines = { storage_machine_3 };

};
connector seas_main_to_persistent_store_1 = {

roles {
seas_main_role_in_connector_to_persistent_store_1;
persistent_store_1_role_in_connector_to_seas_main; };

};
connector seas_main_to_persistent_store_2 = {

roles {
seas_main_role_in_connector_to_persistent_store_2;
persistent_store_2_role_in_connector_to_seas_main; };

};
connector seas_main_to_persistent_store_3 = {

roles {
seas_main_role_in_connector_to_persistent_store_3;
persistent_store_3_role_in_connector_to_seas_main; };

};
attachments {

seas_main_port_for_persistent_store_1
to seas_main_role_in_connector_to_persistent_store_1;

persistent_store_1_port_for_seas_main
to persistent_store_1_role_in_connector_to_seas_main;

seas_main_port_for_persistent_store_2
to seas_main_role_in_connector_to_persistent_store_2;

persistent_store_2_port_for_seas_main
to persistent_store_2_role_in_connector_to_seas_main;

54

seas_main_port_for_persistent_store_3
to seas_main_role_in_connector_to_persistent_store_3;

persistent_store_3_port_for_seas_main
to persistent_store_3_role_in_connector_to_seas_main;

};
}

Automatically translating this description to Promela yields

bit compromised_seas_main = 0; /* Initially, no intrusion */
bit compromised_persistent_store_1 = 0; /* Initially, no intrusion */
bit compromised_persistent_store_2 = 0; /* Initially, no intrusion */
bit compromised_persistent_store_3 = 0; /* Initially, no intrusion */
int attack_attempts = 0;

proctype attack_seas(){
reattack:

if
:: !compromised_persistent_store_1 -->

reattack_persistent_store_1:
if
:: attack_attempts++;

printf("It took %d attacks to compromise persistent_store_1.\\n",
attack_attempts); /* Record before failure state */

compromised_persistent_store_1 = 1; /* Attack succeeds */
goto reattack

:: attack_attempts++;
goto reattack_persistent_store_1 /* Attack fails */

fi
:: !compromised_persistent_store_2 -->

reattack_persistent_store_2:
if
:: attack_attempts++;

printf("It took %d attacks to compromise persistent_store_2.\\n",
attack_attempts); /* Record before failure state */

compromised_persistent_store_2 = 1; /* Attack succeeds */
goto reattack

:: attack_attempts++;
goto reattack_persistent_store_2 /* Attack fails */

fi
:: !compromised_persistent_store_3 -->

reattack_persistent_store_3:
if
:: attack_attempts++;

printf("It took %d attacks to compromise persistent_store_3.\\n",
attack_attempts); /* Record before failure state */

compromised_persistent_store_3 = 1; /* Attack succeeds */
goto reattack

:: attack_attempts++;
goto reattack_persistent_store_3 /* Attack fails */

fi
:: !compromised_seas_main -->

reattack_seas_main:
if
:: attack_attempts++;

printf("It took %d attacks to compromise seas_main.\\n",
attack_attempts);

55

compromised_seas_main = 1; /* Attack succeeds */
goto reattack

:: attack_attempts++;
goto reattack_seas_main /* Attack fails */

fi
:: else --> skip

fi;
printf("It took %d attack attempts to compromise all components.\\n",

attack_attempts)
};

init{
run attack_seas()

}

and an updated Spin analysis, which shows that failure of a single persistent store
component is now tolerated, is used to produce an updated gauge reading.

Note that the strategy employed seems to be fairly robust. The choice of
bindings for each transformation is not specified, since the most abstract result
is independent of the order in which the bindings are chosen. Furthermore, the
same strategy works after the addition and deletion of components or connectors
from the noncritical part of the architecture. More specifically, the feasibility of
automatically updating gauges has been demonstrated by integrating additional
components that redundantly compute a second critical function into the system,
resulting in changes to the requirements, functionality, and architecture of the sys-
tem.

While this robustness is encouraging, it is not surprising to find that there
are situations in which this simple approach to encoding strategy is not powerful
enough to tackle more complex abstraction problems, and that it does not exhibit
sufficient robustness in the face of larger architectural changes. The most general
concern is search strategy; a sequence of transformations may result in a “dead
end” in which a description that is not sufficiently abstract cannot be transformed
further given the set of known atomic transformations. An example would be a
strategy that appliesT1 too many times, resulting in edge loops that cannot be
abstracted away usingT1 or T2. More general tree-based search strategies may
be required in some cases. Even without complex search strategies, it is useful
for earlier transformations to collect information for use by later transformations.
In particular, this can help efficiency, since transformations can share replicated
work, such as checking constraints. Many transformations, for instance, have
only local effects, and knowledge of where a previous transformation was applied
can inform the next transformation. Finally, the ability to express more sophisti-
cated constraints may be useful. The current scenario relies on pattern variables
to express constraints, meaning the specification pattern must extract information

56

needed for constraint checking. It would be possible to achieve greater separation
of information extraction from the pattern replacement process. Examining the
degree to which this aids the expression of abstraction strategies is an interesting
direction of research.

57

Chapter 5

A Dependability Gauge for
Confidentiality

The second dependability gauge that we have implemented measures a simple se-
curity property of the SEAS architecture, whether information that is transmitted
between different machines is encoded in a form that prevents eavesdropping by
unauthorized parties. In this case, automatic theorem proving is used to determine
the gauge reading.

5.1 Abstraction

The approach to abstraction is much the same as for the failure-tolerance gauge.
As before, the main abstraction techniques employed are bundling of components
and connectors.1 The only real difference is when to, and when not to, bundle.

• Components should be bundled if and only if they are allocated to the same
machine.

• Connectors should be bundled if and only if the ports to which they are
attached are ports of components allocated to the same machine.

Modifying the earlier transformations to reflect these changes is completely
straightforward, and use of the same abstraction strategy — bundle as many con-

1And, as before, the elimination of “irrelevant” properties. Of course, the list of relevant prop-
erties is now quite different. For example,function performed is now “irrelevant”, while
allocated to machine has become quite relevant.

58

nectors as possible, then bundle two components (if possible), and repeat until
nothing more can be done — again produces an analyzable abstract strategy.

The architectural description that results from this abstraction process is

system seas = {
component seas_client = {

ports {
seas_client_port_for_server: html ;

};
property allocated_to_machines = { client_machine };

};
component seas_server = {

ports {
seas_server_port_for_client: html ;
seas_server_port_for_store: rsa ;

};
property allocated_to_machines = { seas_machine };

};
component seas_store = {

ports {
seas_store_port_for_server: rsa ;

};
property allocated_to_machines = { store_machine };

};
connector seas_client_to_seas_server = {

roles {
seas_client_role_in_client_server_connector: html ;
seas_server_role_in_client_server_connector: html ;

};
property connection_protocol = https ;

};
connector seas_server_to_seas_store = {

roles {
seas_server_role_in_server_store_connector: rsa ;
seas_store_role_in_server_store_connector: rsa ;

};
property connection_protocol = http ;

};
attachments {

seas_client_port_for_server
to seas_client_role_in_client_server_connector;

seas_server_port_for_client
to seas_server_role_in_client_server_connector;

seas_server_port_for_store
to seas_server_role_in_server_store_connector;

seas_store_port_for_server
to seas_store_role_in_server_store_connector;

};
};

59

5.2 Analysis

5.2.1 Reasoning about Encryption

A simple logical theory is adequate for the required reasoning about the effects of
encryption. However, the goal is to represent the reasoning in a way that makes the
essential concepts explicit, so that the basic framework can be naturally extended
to capture more interesting arguments. In other words, the logical theory will not
be specially tailored to fit the simple problem under consideration.

The basic idea of the argument of interest is that messages convey content,
where content is the sort of thing that agents know, but that content must be ex-
tracted from the message (which can be thought of as a string of characters). In
some cases, the method for extraction is generally, or at least widely, known, and
can be recognized given the message. (Think of natural language text sent in-the-
clear.) In other cases, the method for extraction is known only to a select few, and
the extraction method cannot be recognized given the message alone. The benefit
of encryption is that extraction of content from an encrypted message requires use
of just such an extracter.

If agenta knows how to extract the contentp of messagem from p, thena
must know which extraction methodg is used to producep from m, or, equiv-
alently, thatg is the inverse of whatever representation methodf was used to
representp asm.2 But, for some choices off , it is reasonable to assume that no
one other than authorized parties — including the sender and intended recipient
of m — knows either thatm is the result of applyingf to p or which g can be

2Some subtleties are being deliberately ignored here. “Agenta knows thatg′ is the extraction
method form” does not follow from “a knows thatg is the extraction method form” and “g = g′”.
The problem is thata may not know thatg isg′, and may even not recognize thatg′ is the extraction
method form when directly presented withg′. This problem can be safely ignored for the present
because that we are primarily concerned with “knowing how”, rather than “knowing that”, and
what we mean by saying “a knows thatg is the extraction method form” is that, when presented
with m in the standard way, a can retrieve an extraction methodin the standard way— a method
known tousas “g” — which can be used to extract the content ofm — which is known tousas
“p”. For present purposes, it is adequate to suppose that, for every pair of terms that denote the
same object,

1. everyone who knows one also knows the other, and

2. it is common knowledge among them that the two terms denote the same object, and which
object it is,

and that quantification is to be interpreted substitutionally. Given these assumptions, the loose talk
about “knowing that” is harmless.

60

used to obtainp from m. For suchf , we can thus infer that no one other than
the authorized parties knows that the content ofm is p. In other words, assuming
limited knowledge of the representation and extraction methods — as we do when
encryption is employed — the impossibility of a violation of confidentiality can
be demonstrated quite trivially.

Thus, the essence of encryption is simply that it prevents extraction of content
by unauthorized agents. That a representation method consisting of application of
some particular encryption function to text in some particular language prevents
extraction of content by unauthorized agents is, for our purposes, simply an em-
pirical hypothesis. No attempt will be made to show that any encryption scheme
actually guarantees that unauthorized extraction is impossible.

Our theory for reasoning about the effects of encryption will be formalized in
a multi-sorted first-order logic, with the following sorts:

Event Events are sendings and receivings of messages by agents. Variablesx, y,
andz (possibly decorated with superscripts or subscripts) will range over
Event.

Agent Agents are the possessors of epistemic state. Variablesa, b, andc will
range over Agent.

MessageMessages are sent and received represented contents. The variablem
will range over messages.

Content Contents are what messages represent. They can also be thought of
as what agents know or fail to know, although the formalization will not
reflect this fact (for technical reasons). The variablesp and q will range
over contents.

Representer Representers produce messages from contents, i.e., they are partial
functions from contents to messages. The variablef will range over repre-
senters.

Extracter Extracters produce contents from messages, i.e., they are partial func-
tions from messages to contents. The variableg will range over extracters.

Extracterg will be called theinverseof f when

∀p . f(p)↓ ⇒ g(f(p))↓ ∧ g(f(p)) = p

61

and
∀m . g(m)↓ ⇒ f(g(m))↓ ∧ f(g(m)) = m

i.e., when it is the inverse in the usual sense for partial functions. Since we assume
that every representer has an extracter as its inverse, and the uniqueness of this
extracter is guaranteed by the definition of “inverse”, thatg is the inverse off can
be expressed by

g = inverse(f)

Sincef(p)↓ follows from f(p) = m, the definition of “inverse” licenses the in-
clusion of the following pair of axioms in our theory:

∀f ∀p ∀m . f(p) = m ⇒ inverse(f)(m) = p
∀f ∀p ∀m . inverse(f)(m) = p ⇒ f(p) = m

(Note that the parentheses are being used in two different senses in the formula
above. In the expression “f(p)”, for example, “f ” is an individual variable, and
“ ·(·)” denotes a function on individuals. In the expression “inverse(f)”, “inverse”
denotes a function on individuals, and the parentheses indicate application of
that function to the individual denoted by “f ”. So, appearances to the contrary
notwithstanding, both the axioms are first-order.)

The fact that every event is either a send or a receive, but never both, can be
expressed3

∀x . Send(x) + Receive(x)

The sender or receiver of an event, and the message that is sent or received, can
be determined from the event:

∀x . who(x)↓ ∧ body(x↓)

For our purposes, agents’ knowledge is restricted to having one of three forms.
First, that agenta knows that messagem has contentp is expressed

Know1(a, m, p)

Second, that agenta knows that messagem was obtained by applying representer
f to some content is expressed

Know2(a, m, f)

3The symbol+ means “exclusive or”.

62

Third, that agenta knows that the content of messagem can be extracted using
extracterg can be expressed

Know3(a, m, g)

(Note that dropping the subscript on Know cannot result in ambiguity, given
the difference in the sorts of the third arguments.) The following abbreviation
schemes seem to help the intuition, at some cost in brevity.

Know(a, “m saysp”) −→ Know1(a, m, p)
Know(a, “m from f ”) −→ Know2(a, m, f)
Know(a, “g for m”) −→ Know3(a, m, g)

Now, for the argument itself. Letx0 be the sending of a messagem0 by a0,
wherem0 is f0(p0) for some representerf0, i.e.,

Send(x0) ∧ who(x0) = a0 ∧ body(x0) = m0 ∧m0 = f0(p0)

We assume that only authorized agents know that inverse(f0) is required to extract
p0 from m0, i.e., that

∀b . Know(b, “inverse(f0) for m0”) ⇒ Auth(b)

We want to be able to show that an unauthorized agent cannot know that the
content ofm0 is p0, i.e.,

∀b . Know(b, “m0 saysp0”) ⇒ Auth(b)

The desired result follows immediately given the general principle that an agent
knows that a message has a particular content only if he (or she) knows which
extracter to use to extract the content of the message, i.e.,

∀b ∀m ∀p ∀g . Know(b, “m saysp”) ∧ g(m) = p ⇒ Know(b, “g for m”)

This informal argument can easily be turned into a formal derivation, as in Fig-
ure 5.1 (which has been a bit simplified by exclusion of hypotheses that are not
needed). This derivation shows that all necessary axioms and hypotheses have
been captured, and suggests that any reasonable automatic theorem prover ought
to be able to discover a proof.

63

{1} 1. f0(p0) = m0 Prem
{2} 2. ∀b . Know(b, “inverse(f0) for m0”) ⇒ Auth(b) Prem
{3} 3. ∀b ∀m ∀p ∀g . Know(b, “m saysp”) ∧ g(m) = p ⇒ Know(b, “g for m”) Ax
{4} 4. ∀f ∀p ∀m . f(p) = m ⇒ inverse(f)(m) = p Ax
{5} 5. Know(b, “m0 saysp0”) Hyp
{4} 6. f0(p0) = m0 ⇒ inverse(f0)(m0) = p0 UI (4)

{1, 4} 7. inverse(f0)(m0) = p0 MP(6,1)
{1, 4, 5} 8. Know(b, “m0 saysp0”) ∧ inverse(f0)(m0) = p0 Conj(5,7)

{3} 9. Know(b, “m0 saysp0”) ∧ inverse(f0)(m0) = p0 ⇒ Know(b, “inverse(f0) for m0”) UI(3)
{1, 3, 4, 5} 10. Know(b, “inverse(f0) for m0”) MP(9,8)

{2} 11. Know(b, “inverse(f0) for m0”) ⇒ Auth(b) UI(2)
{1, 2, 3, 4, 5} 12. Auth(b) MP(11,10)
{1, 2, 3, 4} 13. Know(b, “m0 saysp0”) ⇒ Auth(b) Cond(12,5)
{1, 2, 3, 4} 13. ∀b . Know(b, “m0 saysp0”) ⇒ Auth(b) UG(13)

Figure 5.1: Formal derivation in a representative natural deduction calculus

5.2.2 Analysis of Intramachine Connections

Given the argument in the previous section, the approach to analyzing the confi-
dentiality of intramachine connections in an architecture should be fairly straight-
forward. The architecture description should include information about an en-
cryption of data prior to transmission in the type(s) of the relevant port(s), and in-
formation about the protocol used by the connector as a property of the connector.
Given this information, the extracter(s) for messages obtained by eavesdropping
on connector traffic can be identified. If that extracter can be assumed to be known
only by authorized agents, then the content of the message is secure (and, if not,
then not).

In the SEAS example, two different mechanisms are employed to secure the
intramachine connections. The client-server connection uses the HTTPS protocol
instead of standard HTTP, while the server-store connection relies on the fact that
the data is encrypted by RSA prior to storage (and stored in encrypted form, so
that compromise of the storage machine cannot contaminate the SEAS database).
Thus, two proofs that encryption will provide confidentiality are required. The
“translation” of the abstract architectural model to PTTP input reflects this fact.

encryption_proof_0 :-
nl,
pttp((

apply(https_representer, p0, m0),
apply(html_representer, p0, m0),
(auth(B) ; not_know3(B, m0, inverse(https_representer))),
(auth(B) ; not_know3(B, m0, inverse(rsa_representer))),
(know3(B, M, G) ; not_know1(B, M, P) ; not_apply(G, M, P)),
(apply(inverse(F), M, P) ; not_apply(F, P, M)),
know1(b, m0, p0),
(query :- auth(b))

)),

64

fail.
encryption_proof_0 :-

prove(query).

encryption_proof_1 :-
nl,
pttp((

apply(http_representer, p0, m0),
apply(rsa_representer, p0, m0),
(auth(B) ; not_know3(B, m0, inverse(https_representer))),
(auth(B) ; not_know3(B, m0, inverse(rsa_representer))),
(know3(B, M, G) ; not_know1(B, M, P) ; not_apply(G, M, P)),
(apply(inverse(F), M, P) ; not_apply(F, P, M)),
know1(b, m0, p0),
(query :- auth(b))

)),
fail.

encryption_proof_1 :-
prove(query).

encryption_proof :-
dolist([

encryption_proof_1,
encryption_proof_0

]).

PTTP successfully discovers the desired proofs, as expected.

5.3 Update

Just as in the case of the failure-tolerance gauge, the abstraction strategy em-
ployed proves to be sufficiently robust that it will successfully produce an updated
abstract model after any of the changes to the architecture that can be made to our
dynamically reconfigurable SEAS. In particular, if the redundant persistent stor-
age switch is toggled, the abstract description is successfully updated and the four
required proofs are successfully discovered.

65

Chapter 6

Related Work

Transformational implementation was an outgrowth of earlier work on program
synthesis. The basic idea is to formalize the process of refining a high-level
program specification into executable code. Many of the seminal papers in the
field have appeared in anthologies [1, 7, 13]. Experience showed that refine-
ment was a knowledge-intensive process, and the key to success was to focus
on a relatively narrow domain. Software architecture is one such domain. At
SRI, we have worked on formalizing the process of architecture refinement since
1992 [3, 5, 9, 10, 11, 14, 15, 16]. Recently, we have focused on adapting our tech-
nology to component-based systems [17]. Although some other researchers have
investigated the notion of mappings between architectural descriptions at different
levels of abstraction [8], none, to the best of our knowledge, has attempted to for-
malize the process of generating the mappings by using transformations that are
“correctness preserving”. Conversely, most researchers investigating the notion
of correct refinement have not focused on refinement of architecture. There are a
few exceptions (e.g., [2]). Of particular note is the work of Philipps and Rumpe
at T. U. Munich [12], who explicitly address the problem of correct architecture
refinement and that of Saridakis and Issarny of IRISA [20] on developing depend-
able architectures by refinement. Neither employs a transformational framework,
however.

Abstract interpretation is the general framework for the definition of abstrac-
tions of programs. It consists of a mapping between a concrete and an abstract
domain that sends sets of concrete states to single abstract states, together with a
mapping from the basic operations or functions of the concrete system to functions
of the abstract system. While abstract interpretation is the basis for static analy-
sis techniques used in compilers, it is not widely used for dependability analysis.

66

It is in fact extremely difficult to construct useful and accurate abstractions that
automatically preserve the desired dependability properties. Abstract models are
usually provided manually, and theorem proving is used to check that the abstrac-
tion mapping preserves the properties. Once the preservation property is estab-
lished using theorem proving, the abstract model is analyzed by model checking.
Recently [4, 18], novel techniques for automatic Boolean abstraction have been
developed by SRI. These techniques enable verification of system temporal prop-
erties of infinite state systems without manual construction of an abstraction.

Since the abstraction process introduces loss of information by collapsing con-
crete states into a single abstract state, false negative results may emerge. For
instance, a model checker may exhibit an error trace that corresponds to an execu-
tion of the abstract program that violates the dependability properties. However,
this error trace may not correspond to an execution trace in the concrete program.
This situation indicates that the abstraction is too coarse. That is, too many details
were abstracted away, and the abstraction needs to be refined. Techniques have
been developed recently at SRI [19] to use the error trace to automatically refine
the abstraction. The verification methodology — abstraction followed by succes-
sive refinements based on the results of model checking — was successfully used
to prove safety properties of several systems, including a data link protocol used
by Philips Corporation in one of its commercial products. The original proof of
the protocol required two months of work and was entirely done using a theorem
prover. A Boolean abstraction of the protocol can be automatically generated us-
ing the predicates appearing in the description of the protocol in about a hundred
seconds with SRI’s PVS theorem prover. The abstract protocol is then analyzed
in a few seconds to check that all the safety properties hold.

67

Chapter 7

Conclusion

Dependability gauges provide a technology to monitor evolving dependability
properties of dynamically evolving systems. Our approach to building depend-
ability gauages applies proven technology for design time dependability analysis
at runtime. The principal innovation consists of focusing on abstraction rather
than refinement, and on automatic updating of abstractions and analyses devel-
oped at design time after making small, “well structured” changes to architectural
requirements and the system architecture. Our emphasis in the future will be to
develop a suite of abstraction transformations capable of generating a wide range
of dependability gauges, and on developing and experimenting with technologies
to make abstraction and analysis more robust.

Our dependability gauge technology is complementary to the more fine-grained
runtime analysis that can be performed by monitoring events at component inter-
faces and within connectors — that is, our technology is complementary to that
developed by the other DASADA contractors. For instance, our failure-tolerance
gauge provides an excellent example of the potential synergy. Runtime event
monitoring of components’ interface behavior can detect some instances of com-
ponent failure. If failure of a component computing a critical function is observed,
and the failure-tolerance gauge for that function shows that only a single compo-
nent failure can be tolerated, the system, although functioning correctly, is on the
verge of failure, and immediate corrective action may be needed. If, on the other
hand, the failure-tolerance gauge shows that multiple component failures can be
tolerated, the need for corrective action is less urgent. Thus, the combination of
component runtime behavior gauges and dependability gauges provides valuable
system status information that cannot be obtained with either technology alone.

68

Bibliography

[1] W. W. Agresti, editor,Tutorial: New Paradigms for Software Development,
IEEE Computer Society, 1986.

[2] M. Broy, “Compositional Refinement of Interactive Systems”, Report Num-
ber 89, Digital Systems Research Center, Palo Alto, CA, July, 1992.

[3] F. Gilham, R. A. Riemenschneider, and V. Stavridou, “Secure Interoper-
ability of Secure Distributed Databases: An Architecture Verification Case
Study”, FM ’99, World Congress on Formal Methods, Toulouse, France,
September 20-24, 1999.

[4] S. Graf and H. Säıdi, “Construction of Abstract State Graphs Using PVS”,
Proceedings of the 9th International Conference on Computer-Aided Verifi-
cation, CAV ’97, Haifa, Israel, 1997.

[5] J. Herbert, B. Dutertre, R. A. Riemenschneider, and V. Stavridou, “A For-
malization of Software Architecture”,FM ’99, World Congress on Formal
Methods, Toulouse, France, September 20-24, 1999.

[6] M. R. Lowry and R. Duran, “Knowledge-Based Software Engineering”. In
A. Barr, P. R. Cohen, and E. A. Feigenbaum,The Handbook of Artificial
Intelligence, Volume IV, Addison-Wesley, 1989.

[7] M. R. Lowry and R. D. McCartney, editors,Automating Software Design,
AAAI Press/MIT Press, 1991.

[8] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Vera, D. Bryan, and
W. Mann, “Specification and Analysis of System Architecture Using
Rapide”,IEEE Transactions on Software Engineering, vol. 21, no. 4, April,
1995.

69

[9] M. Moriconi, X. Qian, and R. A. Riemenschneider, “Correct Architecture
Refinement”,IEEE Transactions on Software Engineering, vol. 21, no. 4,
April, 1995.

[10] M. Moriconi, X. Qian, R. A. Riemenschneider, and L. Gong, “Secure Soft-
ware Architectures”,Proceedings of the 1997 IEEE Symposium on Security
and Privacy, Oakland, CA, May, 1997.

[11] M. Moriconi and R. A. Riemenschneider, “Introduction to SADL 1.0: A Lan-
guage for Specifying Software Architecture Hierarchies”, Technical Report
SRI-CSL-97-01, Computer Science Laboratory, SRI International, Menlo
Park, CA, March, 1997.

[12] J. Philipps and B. Rumpe, “Refinement of Information Flow Architectures”,
Proceedings of the First IEEE International Conference on Formal Engi-
neering Methods, ICFEM ’97, November, 1997.

[13] C. Rich and R. C. Waters, editors,Readings in Artificial Intelligence and
Software Engineering, Morgan Kaufmann, 1986.

[14] R. A. Riemenschneider, “A Simplified Method for Establishing the Correct-
ness of Architectural Refinements”, Working Paper DSA-97-02, Depend-
able System Archiecture Group, Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, November, 1997. Available athttp://www.
sdl.sri.com/papers/simplified/ .

[15] R. A. Riemenschneider, “Correct Transformation Rules for Incremental De-
velopment of Architecture Hierarchies”, Working Paper DSA-98-01, De-
pendable System Architecture Group, Computer Science Laboratory, SRI In-
ternational, Menlo Park, CA, February, 1998. Available athttp://www.
sdl.sri.com/papers/incremental/ .

[16] R. A. Riemenschneider. “Checking the Correctness of Architectural Trans-
formation Steps via Proof-Carrying Architectures”. In P. Donahoe,Software
Architecture, Kluwer, 1999.

[17] R. A. Riemenschneider and V. Stavridou. “The Role of Architecture Descrip-
tion Languages in Component-Based Development: The SRI Perspective”,
1999 International Workshop on Component-Based Software Engineering,
Los Angeles, CA, May 17-18, 1999.

70

[18] H. Säıdi and N. Shankar, “Abstract and Model-Check While You Prove”,
Proceedings of the 11th International Conference on Computer-Aided Veri-
fication, CAV ’99, Trento, Italy, 1999.

[19] H. Säıdi, “Modular and Incremental Analysis of Concurrent Software Sys-
tems”, Proceedings of the 14th IEEE International Conference on Auto-
mated Software Engineering, ASE ’99, Cocoa Beach, FL, 1999.

[20] T. Saridakis and V. Issarny, “Developing Dependable Systems Using Soft-
ware Architecture”in P. Donahoe,Software Architecture, Kluwer, 1999.

71

